解析学において、微分方程式(びぶんほうていしき、(英: differential equation)とは、未知関数とその導関数の関係式として書かれている関数方程式である。 数学の応用分野においてしばしば、異なる2つの変数の関係を調べることが行われる。2変数を対応付ける関数があらわになっていなくても、その導関数(の満たすべき方程式)を適当な仮定の下で定めることができ、そこから目的とする関数を探し出すことができる。 物理法則を記述する基礎方程式は、多くが時間微分、を含む微分方程式であり、物理学からの要請もあり微分方程式の解法には多くの関心が注がれてきた。 方程式論は解析学の中心的な分野で、フーリエ変換、ラプラス変換等は元々、微分方程式を解くために開発された手法である。また物理学における微分方程式の主要な問題は境界値問題、固有値問題である。 その他、有名な微分方程式についてはCategory:微分方程式を参照

Property Value
dbo:abstract
  • 解析学において、微分方程式(びぶんほうていしき、(英: differential equation)とは、未知関数とその導関数の関係式として書かれている関数方程式である。 数学の応用分野においてしばしば、異なる2つの変数の関係を調べることが行われる。2変数を対応付ける関数があらわになっていなくても、その導関数(の満たすべき方程式)を適当な仮定の下で定めることができ、そこから目的とする関数を探し出すことができる。 物理法則を記述する基礎方程式は、多くが時間微分、を含む微分方程式であり、物理学からの要請もあり微分方程式の解法には多くの関心が注がれてきた。 方程式論は解析学の中心的な分野で、フーリエ変換、ラプラス変換等は元々、微分方程式を解くために開発された手法である。また物理学における微分方程式の主要な問題は境界値問題、固有値問題である。 微分方程式は大きく線型微分方程式とに分類される。線形微分方程式の例として、例えばシュレーディンガー方程式が挙げられる。シュレーディンガー方程式は、量子系の状態の時間発展を記述する方法の一つとして広く用いられている。非線型微分方程式の例として、例えばナビエ–ストークス方程式(NS方程式)が挙げられる。NS方程式は流体の運動を記述する基本方程式であり、物理学の応用としても重要な方程式である。しかし、NS方程式の解の存在性は未解決問題でありミレニアム懸賞問題にも選ばれている。 その他、有名な微分方程式についてはCategory:微分方程式を参照 (ja)
  • 解析学において、微分方程式(びぶんほうていしき、(英: differential equation)とは、未知関数とその導関数の関係式として書かれている関数方程式である。 数学の応用分野においてしばしば、異なる2つの変数の関係を調べることが行われる。2変数を対応付ける関数があらわになっていなくても、その導関数(の満たすべき方程式)を適当な仮定の下で定めることができ、そこから目的とする関数を探し出すことができる。 物理法則を記述する基礎方程式は、多くが時間微分、を含む微分方程式であり、物理学からの要請もあり微分方程式の解法には多くの関心が注がれてきた。 方程式論は解析学の中心的な分野で、フーリエ変換、ラプラス変換等は元々、微分方程式を解くために開発された手法である。また物理学における微分方程式の主要な問題は境界値問題、固有値問題である。 微分方程式は大きく線型微分方程式とに分類される。線形微分方程式の例として、例えばシュレーディンガー方程式が挙げられる。シュレーディンガー方程式は、量子系の状態の時間発展を記述する方法の一つとして広く用いられている。非線型微分方程式の例として、例えばナビエ–ストークス方程式(NS方程式)が挙げられる。NS方程式は流体の運動を記述する基本方程式であり、物理学の応用としても重要な方程式である。しかし、NS方程式の解の存在性は未解決問題でありミレニアム懸賞問題にも選ばれている。 その他、有名な微分方程式についてはCategory:微分方程式を参照 (ja)
dbo:thumbnail
dbo:wikiPageID
  • 6696 (xsd:integer)
dbo:wikiPageLength
  • 13280 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 90667817 (xsd:integer)
dbo:wikiPageWikiLink
prop-ja:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • 解析学において、微分方程式(びぶんほうていしき、(英: differential equation)とは、未知関数とその導関数の関係式として書かれている関数方程式である。 数学の応用分野においてしばしば、異なる2つの変数の関係を調べることが行われる。2変数を対応付ける関数があらわになっていなくても、その導関数(の満たすべき方程式)を適当な仮定の下で定めることができ、そこから目的とする関数を探し出すことができる。 物理法則を記述する基礎方程式は、多くが時間微分、を含む微分方程式であり、物理学からの要請もあり微分方程式の解法には多くの関心が注がれてきた。 方程式論は解析学の中心的な分野で、フーリエ変換、ラプラス変換等は元々、微分方程式を解くために開発された手法である。また物理学における微分方程式の主要な問題は境界値問題、固有値問題である。 その他、有名な微分方程式についてはCategory:微分方程式を参照 (ja)
  • 解析学において、微分方程式(びぶんほうていしき、(英: differential equation)とは、未知関数とその導関数の関係式として書かれている関数方程式である。 数学の応用分野においてしばしば、異なる2つの変数の関係を調べることが行われる。2変数を対応付ける関数があらわになっていなくても、その導関数(の満たすべき方程式)を適当な仮定の下で定めることができ、そこから目的とする関数を探し出すことができる。 物理法則を記述する基礎方程式は、多くが時間微分、を含む微分方程式であり、物理学からの要請もあり微分方程式の解法には多くの関心が注がれてきた。 方程式論は解析学の中心的な分野で、フーリエ変換、ラプラス変換等は元々、微分方程式を解くために開発された手法である。また物理学における微分方程式の主要な問題は境界値問題、固有値問題である。 その他、有名な微分方程式についてはCategory:微分方程式を参照 (ja)
rdfs:label
  • 微分方程式 (ja)
  • 微分方程式 (ja)
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is prop-ja:fields of
is owl:sameAs of
is foaf:primaryTopic of