ギブズ-ヘルムホルツの式(ギブズ-ヘルムホルツのしき、Gibbs-Helmholtz equation)とは、熱力学における関係式。内部エネルギーまたはエンタルピーと、自由エネルギーの間の関係式である。1876年にウィラード・ギブズが理論的に導出し、1882年にヘルマン・フォン・ヘルムホルツが実験的に証明した。ヴァルター・ネルンストは1906年、この式を手掛かりに熱力学第三法則を発見した。 化学反応における温度依存性を考える上で重要な式である。この式を使うと、化学電池の起電力が温度によってどの程度変わるかを、反応熱から推定できる。また、この式から導かれるファントホッフの式を使うと、化学平衡に達したときの反応物と生成物の存在比が温度によってどの程度変わるかを、反応熱から推定できる。反応熱が不明あるいは不確かなときは逆に、これらの熱力学関係式を使って反応熱を決定できる。すなわち熱量計による直接測定が困難な反応熱は、起電力や平衡定数の温度依存性を測定することにより、間接的に測定できる。 系のヘルムホルツエネルギー F が熱力学温度 T と体積 V の関数として表されているとき、この系の内部エネルギー U は次式で与えられる。 系のギブズエネルギー G が熱力学温度 T と圧力 p の関数として表されているとき、この系のエンタルピー H は次式で与えられる。

Property Value
dbo:abstract
  • ギブズ-ヘルムホルツの式(ギブズ-ヘルムホルツのしき、Gibbs-Helmholtz equation)とは、熱力学における関係式。内部エネルギーまたはエンタルピーと、自由エネルギーの間の関係式である。1876年にウィラード・ギブズが理論的に導出し、1882年にヘルマン・フォン・ヘルムホルツが実験的に証明した。ヴァルター・ネルンストは1906年、この式を手掛かりに熱力学第三法則を発見した。 化学反応における温度依存性を考える上で重要な式である。この式を使うと、化学電池の起電力が温度によってどの程度変わるかを、反応熱から推定できる。また、この式から導かれるファントホッフの式を使うと、化学平衡に達したときの反応物と生成物の存在比が温度によってどの程度変わるかを、反応熱から推定できる。反応熱が不明あるいは不確かなときは逆に、これらの熱力学関係式を使って反応熱を決定できる。すなわち熱量計による直接測定が困難な反応熱は、起電力や平衡定数の温度依存性を測定することにより、間接的に測定できる。 系のヘルムホルツエネルギー F が熱力学温度 T と体積 V の関数として表されているとき、この系の内部エネルギー U は次式で与えられる。 系のギブズエネルギー G が熱力学温度 T と圧力 p の関数として表されているとき、この系のエンタルピー H は次式で与えられる。 この二つの式と、これらから導かれる一連の式をギブズ-ヘルムホルツの式という。 (ja)
  • ギブズ-ヘルムホルツの式(ギブズ-ヘルムホルツのしき、Gibbs-Helmholtz equation)とは、熱力学における関係式。内部エネルギーまたはエンタルピーと、自由エネルギーの間の関係式である。1876年にウィラード・ギブズが理論的に導出し、1882年にヘルマン・フォン・ヘルムホルツが実験的に証明した。ヴァルター・ネルンストは1906年、この式を手掛かりに熱力学第三法則を発見した。 化学反応における温度依存性を考える上で重要な式である。この式を使うと、化学電池の起電力が温度によってどの程度変わるかを、反応熱から推定できる。また、この式から導かれるファントホッフの式を使うと、化学平衡に達したときの反応物と生成物の存在比が温度によってどの程度変わるかを、反応熱から推定できる。反応熱が不明あるいは不確かなときは逆に、これらの熱力学関係式を使って反応熱を決定できる。すなわち熱量計による直接測定が困難な反応熱は、起電力や平衡定数の温度依存性を測定することにより、間接的に測定できる。 系のヘルムホルツエネルギー F が熱力学温度 T と体積 V の関数として表されているとき、この系の内部エネルギー U は次式で与えられる。 系のギブズエネルギー G が熱力学温度 T と圧力 p の関数として表されているとき、この系のエンタルピー H は次式で与えられる。 この二つの式と、これらから導かれる一連の式をギブズ-ヘルムホルツの式という。 (ja)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 414143 (xsd:integer)
dbo:wikiPageLength
  • 34242 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 91224700 (xsd:integer)
dbo:wikiPageWikiLink
prop-ja:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • ギブズ-ヘルムホルツの式(ギブズ-ヘルムホルツのしき、Gibbs-Helmholtz equation)とは、熱力学における関係式。内部エネルギーまたはエンタルピーと、自由エネルギーの間の関係式である。1876年にウィラード・ギブズが理論的に導出し、1882年にヘルマン・フォン・ヘルムホルツが実験的に証明した。ヴァルター・ネルンストは1906年、この式を手掛かりに熱力学第三法則を発見した。 化学反応における温度依存性を考える上で重要な式である。この式を使うと、化学電池の起電力が温度によってどの程度変わるかを、反応熱から推定できる。また、この式から導かれるファントホッフの式を使うと、化学平衡に達したときの反応物と生成物の存在比が温度によってどの程度変わるかを、反応熱から推定できる。反応熱が不明あるいは不確かなときは逆に、これらの熱力学関係式を使って反応熱を決定できる。すなわち熱量計による直接測定が困難な反応熱は、起電力や平衡定数の温度依存性を測定することにより、間接的に測定できる。 系のヘルムホルツエネルギー F が熱力学温度 T と体積 V の関数として表されているとき、この系の内部エネルギー U は次式で与えられる。 系のギブズエネルギー G が熱力学温度 T と圧力 p の関数として表されているとき、この系のエンタルピー H は次式で与えられる。 (ja)
  • ギブズ-ヘルムホルツの式(ギブズ-ヘルムホルツのしき、Gibbs-Helmholtz equation)とは、熱力学における関係式。内部エネルギーまたはエンタルピーと、自由エネルギーの間の関係式である。1876年にウィラード・ギブズが理論的に導出し、1882年にヘルマン・フォン・ヘルムホルツが実験的に証明した。ヴァルター・ネルンストは1906年、この式を手掛かりに熱力学第三法則を発見した。 化学反応における温度依存性を考える上で重要な式である。この式を使うと、化学電池の起電力が温度によってどの程度変わるかを、反応熱から推定できる。また、この式から導かれるファントホッフの式を使うと、化学平衡に達したときの反応物と生成物の存在比が温度によってどの程度変わるかを、反応熱から推定できる。反応熱が不明あるいは不確かなときは逆に、これらの熱力学関係式を使って反応熱を決定できる。すなわち熱量計による直接測定が困難な反応熱は、起電力や平衡定数の温度依存性を測定することにより、間接的に測定できる。 系のヘルムホルツエネルギー F が熱力学温度 T と体積 V の関数として表されているとき、この系の内部エネルギー U は次式で与えられる。 系のギブズエネルギー G が熱力学温度 T と圧力 p の関数として表されているとき、この系のエンタルピー H は次式で与えられる。 (ja)
rdfs:label
  • ギブズ-ヘルムホルツの式 (ja)
  • ギブズ-ヘルムホルツの式 (ja)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageWikiLink of
is prop-ja:knownFor of
is owl:sameAs of
is foaf:primaryTopic of