数学における四元数(しげんすう、英: quaternion)とは、複素数を拡張した数体系であり、虚数単位 i, j, k を用いて a + bi + cj + dk と表せる数のことである。ここで、a, b, c, d は実数であり、虚数単位 i, j, k は以下の関係を満たす。 このとき 1, i, j, k は実数体上線型独立である。 四元数は純粋数学のみならず応用数学、特に3Dグラフィクスやコンピュータビジョンにおいてでも用いられる。これはオイラー角や回転行列あるいはそれらに代わる道具などとともに、必要に応じて利用される。 四元数についての最初の記述は、1843年にアイルランドの数学者ウィリアム・ローワン・ハミルトンによってなされ、3次元空間の力学に応用された。 四元数の特徴は、積について非可換であることである。ハミルトンは、四元数を三次元空間内の二つの有向直線の商として定義した。これは二つのベクトルの商と言っても同じである。四元数をスカラーと三次元のベクトルとの和として表すこともできる。 なお、虚数単位i,j,kについても非可換であることが知られている。 この代数 H は解析学において特別な位置を占めている。というのも、フロベニウスの定理に従えば H は実数全体 ℝ を真の部分環として含む有限次元可除環の2種類しかないうちの一つ(もう一つは複素数全体 ℂ)だからである。

Property Value
dbo:abstract
  • 数学における四元数(しげんすう、英: quaternion)とは、複素数を拡張した数体系であり、虚数単位 i, j, k を用いて a + bi + cj + dk と表せる数のことである。ここで、a, b, c, d は実数であり、虚数単位 i, j, k は以下の関係を満たす。 このとき 1, i, j, k は実数体上線型独立である。 四元数は純粋数学のみならず応用数学、特に3Dグラフィクスやコンピュータビジョンにおいてでも用いられる。これはオイラー角や回転行列あるいはそれらに代わる道具などとともに、必要に応じて利用される。 四元数についての最初の記述は、1843年にアイルランドの数学者ウィリアム・ローワン・ハミルトンによってなされ、3次元空間の力学に応用された。 四元数の特徴は、積について非可換であることである。ハミルトンは、四元数を三次元空間内の二つの有向直線の商として定義した。これは二つのベクトルの商と言っても同じである。四元数をスカラーと三次元のベクトルとの和として表すこともできる。 なお、虚数単位i,j,kについても非可換であることが知られている。 現代数学の観点からは、四元数全体からなる集合は、実数体上の4次元結合的ノルム多元体であり、またそれゆえに非可換整域となる。歴史的には四元数の体系は、最初に発見された非可換多元体である。四元数全体の成すこの代数は、ハミルトンに因んで H(あるいは黒板太文字で ℍ)と書かれる。またこの代数を、クリフォード代数 Cℓ0,2⁡(R) ≅ Cℓ03,0⁡(R) として定義することもできる。 この代数 H は解析学において特別な位置を占めている。というのも、フロベニウスの定理に従えば H は実数全体 ℝ を真の部分環として含む有限次元可除環の2種類しかないうちの一つ(もう一つは複素数全体 ℂ)だからである。 従って、単位四元数は三次元球面 S3 上の群構造を選んだものとして考えることができて、群 Spin⁡(3) を与える。これは 2次特殊ユニタリ群 SU⁡(2) に同型、あるいはまた の普遍被覆に同型である。 (ja)
  • 数学における四元数(しげんすう、英: quaternion)とは、複素数を拡張した数体系であり、虚数単位 i, j, k を用いて a + bi + cj + dk と表せる数のことである。ここで、a, b, c, d は実数であり、虚数単位 i, j, k は以下の関係を満たす。 このとき 1, i, j, k は実数体上線型独立である。 四元数は純粋数学のみならず応用数学、特に3Dグラフィクスやコンピュータビジョンにおいてでも用いられる。これはオイラー角や回転行列あるいはそれらに代わる道具などとともに、必要に応じて利用される。 四元数についての最初の記述は、1843年にアイルランドの数学者ウィリアム・ローワン・ハミルトンによってなされ、3次元空間の力学に応用された。 四元数の特徴は、積について非可換であることである。ハミルトンは、四元数を三次元空間内の二つの有向直線の商として定義した。これは二つのベクトルの商と言っても同じである。四元数をスカラーと三次元のベクトルとの和として表すこともできる。 なお、虚数単位i,j,kについても非可換であることが知られている。 現代数学の観点からは、四元数全体からなる集合は、実数体上の4次元結合的ノルム多元体であり、またそれゆえに非可換整域となる。歴史的には四元数の体系は、最初に発見された非可換多元体である。四元数全体の成すこの代数は、ハミルトンに因んで H(あるいは黒板太文字で ℍ)と書かれる。またこの代数を、クリフォード代数 Cℓ0,2⁡(R) ≅ Cℓ03,0⁡(R) として定義することもできる。 この代数 H は解析学において特別な位置を占めている。というのも、フロベニウスの定理に従えば H は実数全体 ℝ を真の部分環として含む有限次元可除環の2種類しかないうちの一つ(もう一つは複素数全体 ℂ)だからである。 従って、単位四元数は三次元球面 S3 上の群構造を選んだものとして考えることができて、群 Spin⁡(3) を与える。これは 2次特殊ユニタリ群 SU⁡(2) に同型、あるいはまた の普遍被覆に同型である。 (ja)
dbo:thumbnail
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 7232 (xsd:integer)
dbo:wikiPageLength
  • 49687 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 92184995 (xsd:integer)
dbo:wikiPageWikiLink
prop-ja:title
  • Quaternion (ja)
  • 四元数と三次元空間における回転 (ja)
  • Quaternion (ja)
  • 四元数と三次元空間における回転 (ja)
prop-ja:urlname
  • Quaternion (ja)
  • quaternion (ja)
  • Quaternion (ja)
  • quaternion (ja)
prop-ja:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • 数学における四元数(しげんすう、英: quaternion)とは、複素数を拡張した数体系であり、虚数単位 i, j, k を用いて a + bi + cj + dk と表せる数のことである。ここで、a, b, c, d は実数であり、虚数単位 i, j, k は以下の関係を満たす。 このとき 1, i, j, k は実数体上線型独立である。 四元数は純粋数学のみならず応用数学、特に3Dグラフィクスやコンピュータビジョンにおいてでも用いられる。これはオイラー角や回転行列あるいはそれらに代わる道具などとともに、必要に応じて利用される。 四元数についての最初の記述は、1843年にアイルランドの数学者ウィリアム・ローワン・ハミルトンによってなされ、3次元空間の力学に応用された。 四元数の特徴は、積について非可換であることである。ハミルトンは、四元数を三次元空間内の二つの有向直線の商として定義した。これは二つのベクトルの商と言っても同じである。四元数をスカラーと三次元のベクトルとの和として表すこともできる。 なお、虚数単位i,j,kについても非可換であることが知られている。 この代数 H は解析学において特別な位置を占めている。というのも、フロベニウスの定理に従えば H は実数全体 ℝ を真の部分環として含む有限次元可除環の2種類しかないうちの一つ(もう一つは複素数全体 ℂ)だからである。 (ja)
  • 数学における四元数(しげんすう、英: quaternion)とは、複素数を拡張した数体系であり、虚数単位 i, j, k を用いて a + bi + cj + dk と表せる数のことである。ここで、a, b, c, d は実数であり、虚数単位 i, j, k は以下の関係を満たす。 このとき 1, i, j, k は実数体上線型独立である。 四元数は純粋数学のみならず応用数学、特に3Dグラフィクスやコンピュータビジョンにおいてでも用いられる。これはオイラー角や回転行列あるいはそれらに代わる道具などとともに、必要に応じて利用される。 四元数についての最初の記述は、1843年にアイルランドの数学者ウィリアム・ローワン・ハミルトンによってなされ、3次元空間の力学に応用された。 四元数の特徴は、積について非可換であることである。ハミルトンは、四元数を三次元空間内の二つの有向直線の商として定義した。これは二つのベクトルの商と言っても同じである。四元数をスカラーと三次元のベクトルとの和として表すこともできる。 なお、虚数単位i,j,kについても非可換であることが知られている。 この代数 H は解析学において特別な位置を占めている。というのも、フロベニウスの定理に従えば H は実数全体 ℝ を真の部分環として含む有限次元可除環の2種類しかないうちの一つ(もう一つは複素数全体 ℂ)だからである。 (ja)
rdfs:label
  • 四元数 (ja)
  • 四元数 (ja)
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is prop-ja:knownFor of
is owl:sameAs of
is foaf:primaryTopic of