ブラーマグプタの二平方恒等式(ブラーマグプタのにへいほうこうとうしき)とは、二つの平方数の和で表される二つの数の積が、二つの平方数の和で表せることを示す恒等式である。言い換えれば、二つの平方数の和は乗算に関して閉じているということである。この恒等式はにおける特別な場合である。 正確には、次のように表される。 (1), (2) とも等式の各辺を展開することにより確かめられる。また、(1), (2) は b と −b を(または c と d を)入れ替えることにより得られる。 この恒等式は整数環、有理数環において成り立ち、さらに一般的には任意の可換環において成り立つ。 整数の場合、この恒等式は数論に応用することができる。例えば、フェルマーの二平方和定理と共に使われたとき、平方数と4を法として1に合同な素数の積は平方数の和で表せることを証明できる。

Property Value
dbo:abstract
  • ブラーマグプタの二平方恒等式(ブラーマグプタのにへいほうこうとうしき)とは、二つの平方数の和で表される二つの数の積が、二つの平方数の和で表せることを示す恒等式である。言い換えれば、二つの平方数の和は乗算に関して閉じているということである。この恒等式はにおける特別な場合である。 正確には、次のように表される。 (1), (2) とも等式の各辺を展開することにより確かめられる。また、(1), (2) は b と −b を(または c と d を)入れ替えることにより得られる。 この恒等式は整数環、有理数環において成り立ち、さらに一般的には任意の可換環において成り立つ。 整数の場合、この恒等式は数論に応用することができる。例えば、フェルマーの二平方和定理と共に使われたとき、平方数と4を法として1に合同な素数の積は平方数の和で表せることを証明できる。 (ja)
  • ブラーマグプタの二平方恒等式(ブラーマグプタのにへいほうこうとうしき)とは、二つの平方数の和で表される二つの数の積が、二つの平方数の和で表せることを示す恒等式である。言い換えれば、二つの平方数の和は乗算に関して閉じているということである。この恒等式はにおける特別な場合である。 正確には、次のように表される。 (1), (2) とも等式の各辺を展開することにより確かめられる。また、(1), (2) は b と −b を(または c と d を)入れ替えることにより得られる。 この恒等式は整数環、有理数環において成り立ち、さらに一般的には任意の可換環において成り立つ。 整数の場合、この恒等式は数論に応用することができる。例えば、フェルマーの二平方和定理と共に使われたとき、平方数と4を法として1に合同な素数の積は平方数の和で表せることを証明できる。 (ja)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 1621932 (xsd:integer)
dbo:wikiPageLength
  • 3025 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 83515309 (xsd:integer)
dbo:wikiPageWikiLink
prop-ja:title
  • Brahmagupta Identity (ja)
  • Brahmagupta Identity (ja)
prop-ja:urlname
  • BrahmaguptaIdentity (ja)
  • BrahmaguptaIdentity (ja)
prop-ja:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • ブラーマグプタの二平方恒等式(ブラーマグプタのにへいほうこうとうしき)とは、二つの平方数の和で表される二つの数の積が、二つの平方数の和で表せることを示す恒等式である。言い換えれば、二つの平方数の和は乗算に関して閉じているということである。この恒等式はにおける特別な場合である。 正確には、次のように表される。 (1), (2) とも等式の各辺を展開することにより確かめられる。また、(1), (2) は b と −b を(または c と d を)入れ替えることにより得られる。 この恒等式は整数環、有理数環において成り立ち、さらに一般的には任意の可換環において成り立つ。 整数の場合、この恒等式は数論に応用することができる。例えば、フェルマーの二平方和定理と共に使われたとき、平方数と4を法として1に合同な素数の積は平方数の和で表せることを証明できる。 (ja)
  • ブラーマグプタの二平方恒等式(ブラーマグプタのにへいほうこうとうしき)とは、二つの平方数の和で表される二つの数の積が、二つの平方数の和で表せることを示す恒等式である。言い換えれば、二つの平方数の和は乗算に関して閉じているということである。この恒等式はにおける特別な場合である。 正確には、次のように表される。 (1), (2) とも等式の各辺を展開することにより確かめられる。また、(1), (2) は b と −b を(または c と d を)入れ替えることにより得られる。 この恒等式は整数環、有理数環において成り立ち、さらに一般的には任意の可換環において成り立つ。 整数の場合、この恒等式は数論に応用することができる。例えば、フェルマーの二平方和定理と共に使われたとき、平方数と4を法として1に合同な素数の積は平方数の和で表せることを証明できる。 (ja)
rdfs:label
  • ブラーマグプタの二平方恒等式 (ja)
  • ブラーマグプタの二平方恒等式 (ja)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageWikiLink of
is owl:sameAs of
is foaf:primaryTopic of