抽象代数学において可換体(かかんたい、仏: corps commutatif)あるいは単に体(たい、英: field)とは、零でない可換可除環、あるいは同じことだが非零元全体が乗法の下で可換群をなすような環のことである。そのようなものとして体は、適当なアーベル群の公理とを満たすような加法、減法、乗法、除法の概念を備えた代数的構造である。最もよく使われる体は、実数体、複素数体、有理数体であるが、他にも有限体、関数の体、代数体、p 進数体、などがある。 任意の体は、線型代数の標準的かつ一般的な対象であるベクトル空間のスカラーとして使うことができる。(ガロワ理論を含む)体拡大の理論は、ある体に係数を持つ多項式の根に関係する。他の結果として、この理論により、古典的な問題である定規とコンパスを用いた角の三等分問題や円積問題が不可能であることの証明や五次方程式が代数的に解けないというアーベル・ルフィニの定理の証明が得られる。現代数学において、体論は数論や代数幾何において必要不可欠な役割を果たしている。 環として、体は整域の特別なタイプとして分類でき、以下のようなクラスの包含の鎖がある。 可換環 ⊃ 整域 ⊃ 整閉整域 ⊃ 一意分解整域 ⊃ 主イデアル整域 ⊃ ユークリッド整域 ⊃ ⊃ 有限体

Property Value
dbo:abstract
  • 抽象代数学において可換体(かかんたい、仏: corps commutatif)あるいは単に体(たい、英: field)とは、零でない可換可除環、あるいは同じことだが非零元全体が乗法の下で可換群をなすような環のことである。そのようなものとして体は、適当なアーベル群の公理とを満たすような加法、減法、乗法、除法の概念を備えた代数的構造である。最もよく使われる体は、実数体、複素数体、有理数体であるが、他にも有限体、関数の体、代数体、p 進数体、などがある。 任意の体は、線型代数の標準的かつ一般的な対象であるベクトル空間のスカラーとして使うことができる。(ガロワ理論を含む)体拡大の理論は、ある体に係数を持つ多項式の根に関係する。他の結果として、この理論により、古典的な問題である定規とコンパスを用いた角の三等分問題や円積問題が不可能であることの証明や五次方程式が代数的に解けないというアーベル・ルフィニの定理の証明が得られる。現代数学において、体論は数論や代数幾何において必要不可欠な役割を果たしている。 代数的構造として、すべての体は環であるが、すべての環が体であるわけではない。最も重要な違いは、体は(ゼロ除算を除いて)除算ができるが、環は乗法逆元がなくてもよいということである。例えば、整数の全体は環をなすが、2x = 1 は整数において解を持たない。また、体における乗法演算は可換でなければならない。可換性を仮定しない除法の可能な環は可除環、斜体、あるいは体と呼ばれる。 環として、体は整域の特別なタイプとして分類でき、以下のようなクラスの包含の鎖がある。 可換環 ⊃ 整域 ⊃ 整閉整域 ⊃ 一意分解整域 ⊃ 主イデアル整域 ⊃ ユークリッド整域 ⊃ ⊃ 有限体 体をアルファベットで表すときは、K (続いて L, M 等)を用いる慣例がある。これは体がドイツ語で "Körper" だからである。英語の "field" の頭文字をとって F が用いられることもある。F の次の文字 G は群と紛らわしいから、前の文字 E も用いられる。 (ja)
  • 抽象代数学において可換体(かかんたい、仏: corps commutatif)あるいは単に体(たい、英: field)とは、零でない可換可除環、あるいは同じことだが非零元全体が乗法の下で可換群をなすような環のことである。そのようなものとして体は、適当なアーベル群の公理とを満たすような加法、減法、乗法、除法の概念を備えた代数的構造である。最もよく使われる体は、実数体、複素数体、有理数体であるが、他にも有限体、関数の体、代数体、p 進数体、などがある。 任意の体は、線型代数の標準的かつ一般的な対象であるベクトル空間のスカラーとして使うことができる。(ガロワ理論を含む)体拡大の理論は、ある体に係数を持つ多項式の根に関係する。他の結果として、この理論により、古典的な問題である定規とコンパスを用いた角の三等分問題や円積問題が不可能であることの証明や五次方程式が代数的に解けないというアーベル・ルフィニの定理の証明が得られる。現代数学において、体論は数論や代数幾何において必要不可欠な役割を果たしている。 代数的構造として、すべての体は環であるが、すべての環が体であるわけではない。最も重要な違いは、体は(ゼロ除算を除いて)除算ができるが、環は乗法逆元がなくてもよいということである。例えば、整数の全体は環をなすが、2x = 1 は整数において解を持たない。また、体における乗法演算は可換でなければならない。可換性を仮定しない除法の可能な環は可除環、斜体、あるいは体と呼ばれる。 環として、体は整域の特別なタイプとして分類でき、以下のようなクラスの包含の鎖がある。 可換環 ⊃ 整域 ⊃ 整閉整域 ⊃ 一意分解整域 ⊃ 主イデアル整域 ⊃ ユークリッド整域 ⊃ ⊃ 有限体 体をアルファベットで表すときは、K (続いて L, M 等)を用いる慣例がある。これは体がドイツ語で "Körper" だからである。英語の "field" の頭文字をとって F が用いられることもある。F の次の文字 G は群と紛らわしいから、前の文字 E も用いられる。 (ja)
dbo:wikiPageID
  • 7419 (xsd:integer)
dbo:wikiPageLength
  • 5606 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 92681009 (xsd:integer)
dbo:wikiPageWikiLink
prop-ja:first
  • L.V. (ja)
  • L.V. (ja)
prop-ja:id
  • Field&oldid=29756 (ja)
  • Field&oldid=29756 (ja)
prop-ja:last
  • Kuz'min (ja)
  • Kuz'min (ja)
prop-ja:title
  • Field (ja)
  • Field (ja)
prop-ja:urlname
  • Field (ja)
  • Field (ja)
prop-ja:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • 抽象代数学において可換体(かかんたい、仏: corps commutatif)あるいは単に体(たい、英: field)とは、零でない可換可除環、あるいは同じことだが非零元全体が乗法の下で可換群をなすような環のことである。そのようなものとして体は、適当なアーベル群の公理とを満たすような加法、減法、乗法、除法の概念を備えた代数的構造である。最もよく使われる体は、実数体、複素数体、有理数体であるが、他にも有限体、関数の体、代数体、p 進数体、などがある。 任意の体は、線型代数の標準的かつ一般的な対象であるベクトル空間のスカラーとして使うことができる。(ガロワ理論を含む)体拡大の理論は、ある体に係数を持つ多項式の根に関係する。他の結果として、この理論により、古典的な問題である定規とコンパスを用いた角の三等分問題や円積問題が不可能であることの証明や五次方程式が代数的に解けないというアーベル・ルフィニの定理の証明が得られる。現代数学において、体論は数論や代数幾何において必要不可欠な役割を果たしている。 環として、体は整域の特別なタイプとして分類でき、以下のようなクラスの包含の鎖がある。 可換環 ⊃ 整域 ⊃ 整閉整域 ⊃ 一意分解整域 ⊃ 主イデアル整域 ⊃ ユークリッド整域 ⊃ ⊃ 有限体 (ja)
  • 抽象代数学において可換体(かかんたい、仏: corps commutatif)あるいは単に体(たい、英: field)とは、零でない可換可除環、あるいは同じことだが非零元全体が乗法の下で可換群をなすような環のことである。そのようなものとして体は、適当なアーベル群の公理とを満たすような加法、減法、乗法、除法の概念を備えた代数的構造である。最もよく使われる体は、実数体、複素数体、有理数体であるが、他にも有限体、関数の体、代数体、p 進数体、などがある。 任意の体は、線型代数の標準的かつ一般的な対象であるベクトル空間のスカラーとして使うことができる。(ガロワ理論を含む)体拡大の理論は、ある体に係数を持つ多項式の根に関係する。他の結果として、この理論により、古典的な問題である定規とコンパスを用いた角の三等分問題や円積問題が不可能であることの証明や五次方程式が代数的に解けないというアーベル・ルフィニの定理の証明が得られる。現代数学において、体論は数論や代数幾何において必要不可欠な役割を果たしている。 環として、体は整域の特別なタイプとして分類でき、以下のようなクラスの包含の鎖がある。 可換環 ⊃ 整域 ⊃ 整閉整域 ⊃ 一意分解整域 ⊃ 主イデアル整域 ⊃ ユークリッド整域 ⊃ ⊃ 有限体 (ja)
rdfs:label
  • 可換体 (ja)
  • 可換体 (ja)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageWikiLink of
is owl:sameAs of
is foaf:primaryTopic of