数学において、クリフォード代数 (クリフォードだいすう、英: Clifford algebra) は結合多元環の一種である。K-代数として、それらは実数、複素数、四元数、そしていくつかの他の超複素数系を一般化する。クリフォード代数の理論は二次形式と直交変換の理論と親密に関係がある。クリフォード代数は幾何学、理論物理学、デジタル画像処理を含む種々の分野において重要な応用を持つ。それらはイギリス人幾何学者にちなんで名づけられている。 最もよく知られたクリフォード代数、あるいは直交クリフォード代数 (ちょっこうクリフォードだいすう、英: orthogonal Clifford algebra) は、リーマンクリフォード代数 (リーマンクリフォードだいすう、英: Riemannian Clifford algebra) とも呼ばれる。

Property Value
dbo:abstract
  • 数学において、クリフォード代数 (クリフォードだいすう、英: Clifford algebra) は結合多元環の一種である。K-代数として、それらは実数、複素数、四元数、そしていくつかの他の超複素数系を一般化する。クリフォード代数の理論は二次形式と直交変換の理論と親密に関係がある。クリフォード代数は幾何学、理論物理学、デジタル画像処理を含む種々の分野において重要な応用を持つ。それらはイギリス人幾何学者にちなんで名づけられている。 最もよく知られたクリフォード代数、あるいは直交クリフォード代数 (ちょっこうクリフォードだいすう、英: orthogonal Clifford algebra) は、リーマンクリフォード代数 (リーマンクリフォードだいすう、英: Riemannian Clifford algebra) とも呼ばれる。 (ja)
  • 数学において、クリフォード代数 (クリフォードだいすう、英: Clifford algebra) は結合多元環の一種である。K-代数として、それらは実数、複素数、四元数、そしていくつかの他の超複素数系を一般化する。クリフォード代数の理論は二次形式と直交変換の理論と親密に関係がある。クリフォード代数は幾何学、理論物理学、デジタル画像処理を含む種々の分野において重要な応用を持つ。それらはイギリス人幾何学者にちなんで名づけられている。 最もよく知られたクリフォード代数、あるいは直交クリフォード代数 (ちょっこうクリフォードだいすう、英: orthogonal Clifford algebra) は、リーマンクリフォード代数 (リーマンクリフォードだいすう、英: Riemannian Clifford algebra) とも呼ばれる。 (ja)
dbo:thumbnail
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 3108075 (xsd:integer)
dbo:wikiPageLength
  • 37016 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 91099037 (xsd:integer)
dbo:wikiPageWikiLink
prop-en:author
  • Rowland, Todd; Weisstein, Eric W. (ja)
  • Rowland, Todd; Weisstein, Eric W. (ja)
prop-en:title
  • Clifford Algebra (ja)
  • Clifford algebra (ja)
  • Clifford Algebra (ja)
  • Clifford algebra (ja)
prop-en:urlname
  • Clifford+algebra (ja)
  • CliffordAlgebra (ja)
  • Clifford_algebra (ja)
  • Clifford+algebra (ja)
  • CliffordAlgebra (ja)
  • Clifford_algebra (ja)
prop-en:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • 数学において、クリフォード代数 (クリフォードだいすう、英: Clifford algebra) は結合多元環の一種である。K-代数として、それらは実数、複素数、四元数、そしていくつかの他の超複素数系を一般化する。クリフォード代数の理論は二次形式と直交変換の理論と親密に関係がある。クリフォード代数は幾何学、理論物理学、デジタル画像処理を含む種々の分野において重要な応用を持つ。それらはイギリス人幾何学者にちなんで名づけられている。 最もよく知られたクリフォード代数、あるいは直交クリフォード代数 (ちょっこうクリフォードだいすう、英: orthogonal Clifford algebra) は、リーマンクリフォード代数 (リーマンクリフォードだいすう、英: Riemannian Clifford algebra) とも呼ばれる。 (ja)
  • 数学において、クリフォード代数 (クリフォードだいすう、英: Clifford algebra) は結合多元環の一種である。K-代数として、それらは実数、複素数、四元数、そしていくつかの他の超複素数系を一般化する。クリフォード代数の理論は二次形式と直交変換の理論と親密に関係がある。クリフォード代数は幾何学、理論物理学、デジタル画像処理を含む種々の分野において重要な応用を持つ。それらはイギリス人幾何学者にちなんで名づけられている。 最もよく知られたクリフォード代数、あるいは直交クリフォード代数 (ちょっこうクリフォードだいすう、英: orthogonal Clifford algebra) は、リーマンクリフォード代数 (リーマンクリフォードだいすう、英: Riemannian Clifford algebra) とも呼ばれる。 (ja)
rdfs:label
  • クリフォード代数 (ja)
  • クリフォード代数 (ja)
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is owl:sameAs of
is foaf:primaryTopic of