Property |
Value |
dbo:abstract
|
- 数学におけるルベーグ測度(ルベーグそくど、英: Lebesgue measure)は、ユークリッド空間上の長さ、面積、体積の概念を拡張したものである。名称はフランスの数学者アンリ・ルベーグにちなむ。体積には「互いに素な集合の体積は元の体積の和に等しい」という性質()がある。この性質を保ちながらより複雑な集合に対しても「体積」を定めることができるよう体積の概念を拡張できる。このような拡張は一意である。実解析、特にルベーグ積分で用いられる。体積と同様ルベーグ測度は値として ∞ をとりうる。解析学で普通に考えられるような集合に対してはルベーグ測度が与えられるものと考えてよいが、 Rn の部分集合でルベーグ測度を与えることができない(無理に与えると加法性が成り立たない)ものが存在することを選択公理によって証明できる。ルベーグ測度が与えられる集合はルベーグ可測であるという。以下の説明ではルベーグ可測な集合 A の測度を λ(A) で表す。 (ja)
- 数学におけるルベーグ測度(ルベーグそくど、英: Lebesgue measure)は、ユークリッド空間上の長さ、面積、体積の概念を拡張したものである。名称はフランスの数学者アンリ・ルベーグにちなむ。体積には「互いに素な集合の体積は元の体積の和に等しい」という性質()がある。この性質を保ちながらより複雑な集合に対しても「体積」を定めることができるよう体積の概念を拡張できる。このような拡張は一意である。実解析、特にルベーグ積分で用いられる。体積と同様ルベーグ測度は値として ∞ をとりうる。解析学で普通に考えられるような集合に対してはルベーグ測度が与えられるものと考えてよいが、 Rn の部分集合でルベーグ測度を与えることができない(無理に与えると加法性が成り立たない)ものが存在することを選択公理によって証明できる。ルベーグ測度が与えられる集合はルベーグ可測であるという。以下の説明ではルベーグ可測な集合 A の測度を λ(A) で表す。 (ja)
|
dbo:wikiPageID
| |
dbo:wikiPageLength
|
- 5222 (xsd:nonNegativeInteger)
|
dbo:wikiPageRevisionID
| |
dbo:wikiPageWikiLink
| |
prop-en:author
|
- Sazonov, V.V. (ja)
- Sazonov, V.V. (ja)
|
prop-en:title
|
- Definition:Lebesgue Measure (ja)
- Lebesgue Measure (ja)
- Lebesgue measure (ja)
- Definition:Lebesgue Measure (ja)
- Lebesgue Measure (ja)
- Lebesgue measure (ja)
|
prop-en:urlname
|
- Definition:Lebesgue_Measure (ja)
- Lebesgue+measure (ja)
- LebesgueMeasure (ja)
- Lebesgue_measure (ja)
- Definition:Lebesgue_Measure (ja)
- Lebesgue+measure (ja)
- LebesgueMeasure (ja)
- Lebesgue_measure (ja)
|
prop-en:wikiPageUsesTemplate
| |
dct:subject
| |
rdfs:comment
|
- 数学におけるルベーグ測度(ルベーグそくど、英: Lebesgue measure)は、ユークリッド空間上の長さ、面積、体積の概念を拡張したものである。名称はフランスの数学者アンリ・ルベーグにちなむ。体積には「互いに素な集合の体積は元の体積の和に等しい」という性質()がある。この性質を保ちながらより複雑な集合に対しても「体積」を定めることができるよう体積の概念を拡張できる。このような拡張は一意である。実解析、特にルベーグ積分で用いられる。体積と同様ルベーグ測度は値として ∞ をとりうる。解析学で普通に考えられるような集合に対してはルベーグ測度が与えられるものと考えてよいが、 Rn の部分集合でルベーグ測度を与えることができない(無理に与えると加法性が成り立たない)ものが存在することを選択公理によって証明できる。ルベーグ測度が与えられる集合はルベーグ可測であるという。以下の説明ではルベーグ可測な集合 A の測度を λ(A) で表す。 (ja)
- 数学におけるルベーグ測度(ルベーグそくど、英: Lebesgue measure)は、ユークリッド空間上の長さ、面積、体積の概念を拡張したものである。名称はフランスの数学者アンリ・ルベーグにちなむ。体積には「互いに素な集合の体積は元の体積の和に等しい」という性質()がある。この性質を保ちながらより複雑な集合に対しても「体積」を定めることができるよう体積の概念を拡張できる。このような拡張は一意である。実解析、特にルベーグ積分で用いられる。体積と同様ルベーグ測度は値として ∞ をとりうる。解析学で普通に考えられるような集合に対してはルベーグ測度が与えられるものと考えてよいが、 Rn の部分集合でルベーグ測度を与えることができない(無理に与えると加法性が成り立たない)ものが存在することを選択公理によって証明できる。ルベーグ測度が与えられる集合はルベーグ可測であるという。以下の説明ではルベーグ可測な集合 A の測度を λ(A) で表す。 (ja)
|
rdfs:label
| |
owl:sameAs
| |
prov:wasDerivedFrom
| |
foaf:isPrimaryTopicOf
| |
is dbo:wikiPageRedirects
of | |
is dbo:wikiPageWikiLink
of | |
is owl:sameAs
of | |
is foaf:primaryTopic
of | |