数学におけるルベーグの密度定理は、任意のルベーグ可測集合 A に対して、A のほとんど至るところにおいて A の「密度」が 1 になることを述べる。これは直観的には、A の「境界」(つまり、A の外側にも内側にもはみ出すような「近傍」を持つような点全体の成す集合)は、ルベーグ測度に関して無視できるという意味である。 μ を Rn 上のルベーグ測度とし、 A を Rn のルベーグ可測な部分集合とする。Rnの点 x の ε-近傍における A の近似密度を次のように定める。 ここで、Bεは x を中心とする半径 ε の閉球体である。 ルベーグの密度定理は A の殆ど全ての点 x に対して密度 が存在してそれが 1 に等しいと主張する。 言い換えると、いかなる可測集合 A に対しても、Rn のほとんど至るところで A の密度は 0 か 1 である。それにもかかわらず、「μ(A) > 0 かつ μ(Rn ∖ A) > 0 ならば、そこで密度が 0 でも 1 でもないような Rn の点が常に存在する」という奇妙な事実が成立する。 密度定理の例として平面上の正方形を考えると、正方形の内点ではその点での密度は 1、辺上の点では 1/2、角の点では 1/4 である。平面上の点で密度が 0 でも 1 でもない点全体の成す集合(もちろん正方形の境界のこと)は空ではないが、(零集合になるという意味で)無視できる。

Property Value
dbo:abstract
  • 数学におけるルベーグの密度定理は、任意のルベーグ可測集合 A に対して、A のほとんど至るところにおいて A の「密度」が 1 になることを述べる。これは直観的には、A の「境界」(つまり、A の外側にも内側にもはみ出すような「近傍」を持つような点全体の成す集合)は、ルベーグ測度に関して無視できるという意味である。 μ を Rn 上のルベーグ測度とし、 A を Rn のルベーグ可測な部分集合とする。Rnの点 x の ε-近傍における A の近似密度を次のように定める。 ここで、Bεは x を中心とする半径 ε の閉球体である。 ルベーグの密度定理は A の殆ど全ての点 x に対して密度 が存在してそれが 1 に等しいと主張する。 言い換えると、いかなる可測集合 A に対しても、Rn のほとんど至るところで A の密度は 0 か 1 である。それにもかかわらず、「μ(A) > 0 かつ μ(Rn ∖ A) > 0 ならば、そこで密度が 0 でも 1 でもないような Rn の点が常に存在する」という奇妙な事実が成立する。 密度定理の例として平面上の正方形を考えると、正方形の内点ではその点での密度は 1、辺上の点では 1/2、角の点では 1/4 である。平面上の点で密度が 0 でも 1 でもない点全体の成す集合(もちろん正方形の境界のこと)は空ではないが、(零集合になるという意味で)無視できる。 ルベーグの密度定理は、ルベーグの微分定理の特殊な場合である。 (ja)
  • 数学におけるルベーグの密度定理は、任意のルベーグ可測集合 A に対して、A のほとんど至るところにおいて A の「密度」が 1 になることを述べる。これは直観的には、A の「境界」(つまり、A の外側にも内側にもはみ出すような「近傍」を持つような点全体の成す集合)は、ルベーグ測度に関して無視できるという意味である。 μ を Rn 上のルベーグ測度とし、 A を Rn のルベーグ可測な部分集合とする。Rnの点 x の ε-近傍における A の近似密度を次のように定める。 ここで、Bεは x を中心とする半径 ε の閉球体である。 ルベーグの密度定理は A の殆ど全ての点 x に対して密度 が存在してそれが 1 に等しいと主張する。 言い換えると、いかなる可測集合 A に対しても、Rn のほとんど至るところで A の密度は 0 か 1 である。それにもかかわらず、「μ(A) > 0 かつ μ(Rn ∖ A) > 0 ならば、そこで密度が 0 でも 1 でもないような Rn の点が常に存在する」という奇妙な事実が成立する。 密度定理の例として平面上の正方形を考えると、正方形の内点ではその点での密度は 1、辺上の点では 1/2、角の点では 1/4 である。平面上の点で密度が 0 でも 1 でもない点全体の成す集合(もちろん正方形の境界のこと)は空ではないが、(零集合になるという意味で)無視できる。 ルベーグの密度定理は、ルベーグの微分定理の特殊な場合である。 (ja)
dbo:wikiPageID
  • 2798706 (xsd:integer)
dbo:wikiPageLength
  • 1644 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 91321023 (xsd:integer)
dbo:wikiPageWikiLink
prop-ja:id
  • 33869 (xsd:integer)
prop-ja:title
  • Lebesgue density theorem (ja)
  • Lebesgue density theorem (ja)
prop-ja:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • 数学におけるルベーグの密度定理は、任意のルベーグ可測集合 A に対して、A のほとんど至るところにおいて A の「密度」が 1 になることを述べる。これは直観的には、A の「境界」(つまり、A の外側にも内側にもはみ出すような「近傍」を持つような点全体の成す集合)は、ルベーグ測度に関して無視できるという意味である。 μ を Rn 上のルベーグ測度とし、 A を Rn のルベーグ可測な部分集合とする。Rnの点 x の ε-近傍における A の近似密度を次のように定める。 ここで、Bεは x を中心とする半径 ε の閉球体である。 ルベーグの密度定理は A の殆ど全ての点 x に対して密度 が存在してそれが 1 に等しいと主張する。 言い換えると、いかなる可測集合 A に対しても、Rn のほとんど至るところで A の密度は 0 か 1 である。それにもかかわらず、「μ(A) > 0 かつ μ(Rn ∖ A) > 0 ならば、そこで密度が 0 でも 1 でもないような Rn の点が常に存在する」という奇妙な事実が成立する。 密度定理の例として平面上の正方形を考えると、正方形の内点ではその点での密度は 1、辺上の点では 1/2、角の点では 1/4 である。平面上の点で密度が 0 でも 1 でもない点全体の成す集合(もちろん正方形の境界のこと)は空ではないが、(零集合になるという意味で)無視できる。 (ja)
  • 数学におけるルベーグの密度定理は、任意のルベーグ可測集合 A に対して、A のほとんど至るところにおいて A の「密度」が 1 になることを述べる。これは直観的には、A の「境界」(つまり、A の外側にも内側にもはみ出すような「近傍」を持つような点全体の成す集合)は、ルベーグ測度に関して無視できるという意味である。 μ を Rn 上のルベーグ測度とし、 A を Rn のルベーグ可測な部分集合とする。Rnの点 x の ε-近傍における A の近似密度を次のように定める。 ここで、Bεは x を中心とする半径 ε の閉球体である。 ルベーグの密度定理は A の殆ど全ての点 x に対して密度 が存在してそれが 1 に等しいと主張する。 言い換えると、いかなる可測集合 A に対しても、Rn のほとんど至るところで A の密度は 0 か 1 である。それにもかかわらず、「μ(A) > 0 かつ μ(Rn ∖ A) > 0 ならば、そこで密度が 0 でも 1 でもないような Rn の点が常に存在する」という奇妙な事実が成立する。 密度定理の例として平面上の正方形を考えると、正方形の内点ではその点での密度は 1、辺上の点では 1/2、角の点では 1/4 である。平面上の点で密度が 0 でも 1 でもない点全体の成す集合(もちろん正方形の境界のこと)は空ではないが、(零集合になるという意味で)無視できる。 (ja)
rdfs:label
  • ルベーグの密度定理 (ja)
  • ルベーグの密度定理 (ja)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageWikiLink of
is owl:sameAs of
is foaf:primaryTopic of