数学において、一変数の非負値関数の積分は、最も単純な場合には、その関数のグラフと x 軸の間の面積と見なすことができる。ルベーグ積分(ルベーグせきぶん、英: Lebesgue integral)とは、より多くの関数を積分できるように拡張したものである。ルベーグ積分においては、被積分関数は連続である必要はなく、至るところ不連続でもよいし、関数値として無限大をとることがあってもよい。さらに、関数の定義域も拡張され、測度空間と呼ばれる空間で定義された関数を被積分関数とすることもできる。 ルベーグ積分は実解析と呼ばれる数学の分野に属する確率論や、他の多くの数理科学分野において、重要な役割を果たす。ルベーグ積分という名前は、その積分を導入した数学者アンリ・ルベーグ (Henri Lebesgue, 1875–1941) に由来している。それはまたの中枢部でもある。 「ルベーグ積分」(Lebesgue integration) という用語は、カラテオドリに始まる一般の測度に関する関数の積分の一般論を意味することもあるし、ルベーグ測度に関して実数直線(あるいは n-次元ユークリッド空間)の特定の部分集合(特に)上定義されたを積分するという特定の場合を意味することもある。

Property Value
dbo:abstract
  • 数学において、一変数の非負値関数の積分は、最も単純な場合には、その関数のグラフと x 軸の間の面積と見なすことができる。ルベーグ積分(ルベーグせきぶん、英: Lebesgue integral)とは、より多くの関数を積分できるように拡張したものである。ルベーグ積分においては、被積分関数は連続である必要はなく、至るところ不連続でもよいし、関数値として無限大をとることがあってもよい。さらに、関数の定義域も拡張され、測度空間と呼ばれる空間で定義された関数を被積分関数とすることもできる。 数学者は長い間、十分滑らかなグラフを持つ非負値関数、例えば有界閉区間上の連続関数、に対しては、「曲線の下部の面積」を積分と定義できると理解しており、多角形によって領域を近似する手法によってそれを計算した。しかしながら、より不規則な関数を考える必要が、例えば解析学や確率論において極限を考えるときに生じたため、より注意深い近似の手法が適切な積分を定義するために必要なことが明らかとなった。また、局所コンパクト群のような、実数直線よりも一般の空間上で積分をしたいことがある。ルベーグ積分はこの重要な仕事をするために必要な正しい抽象化を与える。例えば、フーリエ級数などの関数列の極限として表される関数に対して、積分と極限操作が可換となるかどうかをリーマン積分で考えると非常に繊細な議論が必要だが、ルベーグ積分では、積分と極限操作の交換が可能であるための簡単な十分条件が分かっている。 ルベーグ積分は実解析と呼ばれる数学の分野に属する確率論や、他の多くの数理科学分野において、重要な役割を果たす。ルベーグ積分という名前は、その積分を導入した数学者アンリ・ルベーグ (Henri Lebesgue, 1875–1941) に由来している。それはまたの中枢部でもある。 「ルベーグ積分」(Lebesgue integration) という用語は、カラテオドリに始まる一般の測度に関する関数の積分の一般論を意味することもあるし、ルベーグ測度に関して実数直線(あるいは n-次元ユークリッド空間)の特定の部分集合(特に)上定義されたを積分するという特定の場合を意味することもある。 (ja)
  • 数学において、一変数の非負値関数の積分は、最も単純な場合には、その関数のグラフと x 軸の間の面積と見なすことができる。ルベーグ積分(ルベーグせきぶん、英: Lebesgue integral)とは、より多くの関数を積分できるように拡張したものである。ルベーグ積分においては、被積分関数は連続である必要はなく、至るところ不連続でもよいし、関数値として無限大をとることがあってもよい。さらに、関数の定義域も拡張され、測度空間と呼ばれる空間で定義された関数を被積分関数とすることもできる。 数学者は長い間、十分滑らかなグラフを持つ非負値関数、例えば有界閉区間上の連続関数、に対しては、「曲線の下部の面積」を積分と定義できると理解しており、多角形によって領域を近似する手法によってそれを計算した。しかしながら、より不規則な関数を考える必要が、例えば解析学や確率論において極限を考えるときに生じたため、より注意深い近似の手法が適切な積分を定義するために必要なことが明らかとなった。また、局所コンパクト群のような、実数直線よりも一般の空間上で積分をしたいことがある。ルベーグ積分はこの重要な仕事をするために必要な正しい抽象化を与える。例えば、フーリエ級数などの関数列の極限として表される関数に対して、積分と極限操作が可換となるかどうかをリーマン積分で考えると非常に繊細な議論が必要だが、ルベーグ積分では、積分と極限操作の交換が可能であるための簡単な十分条件が分かっている。 ルベーグ積分は実解析と呼ばれる数学の分野に属する確率論や、他の多くの数理科学分野において、重要な役割を果たす。ルベーグ積分という名前は、その積分を導入した数学者アンリ・ルベーグ (Henri Lebesgue, 1875–1941) に由来している。それはまたの中枢部でもある。 「ルベーグ積分」(Lebesgue integration) という用語は、カラテオドリに始まる一般の測度に関する関数の積分の一般論を意味することもあるし、ルベーグ測度に関して実数直線(あるいは n-次元ユークリッド空間)の特定の部分集合(特に)上定義されたを積分するという特定の場合を意味することもある。 (ja)
dbo:thumbnail
dbo:wikiPageID
  • 344302 (xsd:integer)
dbo:wikiPageLength
  • 16739 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 91214454 (xsd:integer)
dbo:wikiPageWikiLink
prop-en:date
  • 2016 (xsd:integer)
prop-en:first
  • I.A. (ja)
  • I.A. (ja)
prop-en:last
  • Vinogradova (ja)
  • Vinogradova (ja)
prop-en:section
  • 1 (xsd:integer)
prop-en:title
  • Definition:Integral of Integrable Function (ja)
  • Definition:Lebesgue Integral (ja)
  • Lebesgue Integral (ja)
  • Lebesgue integral (ja)
  • Lebesgue integration (ja)
  • Definition:Integral of Integrable Function (ja)
  • Definition:Lebesgue Integral (ja)
  • Lebesgue Integral (ja)
  • Lebesgue integral (ja)
  • Lebesgue integration (ja)
prop-en:urlname
  • Definition:Integral_of_Integrable_Function (ja)
  • Definition:Lebesgue_Integral (ja)
  • Lebesgue+integration (ja)
  • LebesgueIntegral (ja)
  • Lebesgue_integral (ja)
  • Definition:Integral_of_Integrable_Function (ja)
  • Definition:Lebesgue_Integral (ja)
  • Lebesgue+integration (ja)
  • LebesgueIntegral (ja)
  • Lebesgue_integral (ja)
prop-en:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • 数学において、一変数の非負値関数の積分は、最も単純な場合には、その関数のグラフと x 軸の間の面積と見なすことができる。ルベーグ積分(ルベーグせきぶん、英: Lebesgue integral)とは、より多くの関数を積分できるように拡張したものである。ルベーグ積分においては、被積分関数は連続である必要はなく、至るところ不連続でもよいし、関数値として無限大をとることがあってもよい。さらに、関数の定義域も拡張され、測度空間と呼ばれる空間で定義された関数を被積分関数とすることもできる。 ルベーグ積分は実解析と呼ばれる数学の分野に属する確率論や、他の多くの数理科学分野において、重要な役割を果たす。ルベーグ積分という名前は、その積分を導入した数学者アンリ・ルベーグ (Henri Lebesgue, 1875–1941) に由来している。それはまたの中枢部でもある。 「ルベーグ積分」(Lebesgue integration) という用語は、カラテオドリに始まる一般の測度に関する関数の積分の一般論を意味することもあるし、ルベーグ測度に関して実数直線(あるいは n-次元ユークリッド空間)の特定の部分集合(特に)上定義されたを積分するという特定の場合を意味することもある。 (ja)
  • 数学において、一変数の非負値関数の積分は、最も単純な場合には、その関数のグラフと x 軸の間の面積と見なすことができる。ルベーグ積分(ルベーグせきぶん、英: Lebesgue integral)とは、より多くの関数を積分できるように拡張したものである。ルベーグ積分においては、被積分関数は連続である必要はなく、至るところ不連続でもよいし、関数値として無限大をとることがあってもよい。さらに、関数の定義域も拡張され、測度空間と呼ばれる空間で定義された関数を被積分関数とすることもできる。 ルベーグ積分は実解析と呼ばれる数学の分野に属する確率論や、他の多くの数理科学分野において、重要な役割を果たす。ルベーグ積分という名前は、その積分を導入した数学者アンリ・ルベーグ (Henri Lebesgue, 1875–1941) に由来している。それはまたの中枢部でもある。 「ルベーグ積分」(Lebesgue integration) という用語は、カラテオドリに始まる一般の測度に関する関数の積分の一般論を意味することもあるし、ルベーグ測度に関して実数直線(あるいは n-次元ユークリッド空間)の特定の部分集合(特に)上定義されたを積分するという特定の場合を意味することもある。 (ja)
rdfs:label
  • ルベーグ積分 (ja)
  • ルベーグ積分 (ja)
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is owl:sameAs of
is foaf:primaryTopic of