数学におけるディラックのデルタ関数(デルタかんすう、(英: delta function)、または制御工学におけるインパルス関数(インパルスかんすう、(英: impulse function)とは、任意の実連続関数 に対し、 を満たす実数値シュワルツ超関数 δ のことである。これはクロネッカーのデルタ の自然な拡張になっている。 ディラックのデルタ関数はデルタ超関数(英: delta distribution)あるいは単にディラックデルタ(英: Dirac's delta)とも呼ばれる。これを最初に定義して量子力学の定式化に用いた物理学者ポール・ディラックに因み、この名称が付いている。デルタ関数は古典的な意味での関数ではないシュワルツ超関数(英: distribution)の最初の例になっている。 ディラックのデルタの「関数」としての性質は、形式的に次のように述べることができる。まず、f(x) として実直線上常に一定の値 1 をとる関数をとり、デルタ関数をデルタ関数自身と f(x) = 1 との積であると見ることにより である。一方、積分値が f の x = 0 での値にしかよらないことから でなければならないが、その上で積分値が 0 でない有限の値をとるためには が満たされなければならない。

Property Value
dbo:abstract
  • 数学におけるディラックのデルタ関数(デルタかんすう、(英: delta function)、または制御工学におけるインパルス関数(インパルスかんすう、(英: impulse function)とは、任意の実連続関数 に対し、 を満たす実数値シュワルツ超関数 δ のことである。これはクロネッカーのデルタ の自然な拡張になっている。 ディラックのデルタ関数はデルタ超関数(英: delta distribution)あるいは単にディラックデルタ(英: Dirac's delta)とも呼ばれる。これを最初に定義して量子力学の定式化に用いた物理学者ポール・ディラックに因み、この名称が付いている。デルタ関数は古典的な意味での関数ではないシュワルツ超関数(英: distribution)の最初の例になっている。 ディラックのデルタの「関数」としての性質は、形式的に次のように述べることができる。まず、f(x) として実直線上常に一定の値 1 をとる関数をとり、デルタ関数をデルタ関数自身と f(x) = 1 との積であると見ることにより である。一方、積分値が f の x = 0 での値にしかよらないことから でなければならないが、その上で積分値が 0 でない有限の値をとるためには が満たされなければならない。 (ja)
  • 数学におけるディラックのデルタ関数(デルタかんすう、(英: delta function)、または制御工学におけるインパルス関数(インパルスかんすう、(英: impulse function)とは、任意の実連続関数 に対し、 を満たす実数値シュワルツ超関数 δ のことである。これはクロネッカーのデルタ の自然な拡張になっている。 ディラックのデルタ関数はデルタ超関数(英: delta distribution)あるいは単にディラックデルタ(英: Dirac's delta)とも呼ばれる。これを最初に定義して量子力学の定式化に用いた物理学者ポール・ディラックに因み、この名称が付いている。デルタ関数は古典的な意味での関数ではないシュワルツ超関数(英: distribution)の最初の例になっている。 ディラックのデルタの「関数」としての性質は、形式的に次のように述べることができる。まず、f(x) として実直線上常に一定の値 1 をとる関数をとり、デルタ関数をデルタ関数自身と f(x) = 1 との積であると見ることにより である。一方、積分値が f の x = 0 での値にしかよらないことから でなければならないが、その上で積分値が 0 でない有限の値をとるためには が満たされなければならない。 (ja)
dbo:thumbnail
dbo:wikiPageID
  • 13032 (xsd:integer)
dbo:wikiPageLength
  • 8525 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 92603152 (xsd:integer)
dbo:wikiPageWikiLink
prop-ja:title
  • Delta Function (ja)
  • Delta Function (ja)
prop-ja:urlname
  • DeltaFunction (ja)
  • DeltaFunction (ja)
prop-ja:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • 数学におけるディラックのデルタ関数(デルタかんすう、(英: delta function)、または制御工学におけるインパルス関数(インパルスかんすう、(英: impulse function)とは、任意の実連続関数 に対し、 を満たす実数値シュワルツ超関数 δ のことである。これはクロネッカーのデルタ の自然な拡張になっている。 ディラックのデルタ関数はデルタ超関数(英: delta distribution)あるいは単にディラックデルタ(英: Dirac's delta)とも呼ばれる。これを最初に定義して量子力学の定式化に用いた物理学者ポール・ディラックに因み、この名称が付いている。デルタ関数は古典的な意味での関数ではないシュワルツ超関数(英: distribution)の最初の例になっている。 ディラックのデルタの「関数」としての性質は、形式的に次のように述べることができる。まず、f(x) として実直線上常に一定の値 1 をとる関数をとり、デルタ関数をデルタ関数自身と f(x) = 1 との積であると見ることにより である。一方、積分値が f の x = 0 での値にしかよらないことから でなければならないが、その上で積分値が 0 でない有限の値をとるためには が満たされなければならない。 (ja)
  • 数学におけるディラックのデルタ関数(デルタかんすう、(英: delta function)、または制御工学におけるインパルス関数(インパルスかんすう、(英: impulse function)とは、任意の実連続関数 に対し、 を満たす実数値シュワルツ超関数 δ のことである。これはクロネッカーのデルタ の自然な拡張になっている。 ディラックのデルタ関数はデルタ超関数(英: delta distribution)あるいは単にディラックデルタ(英: Dirac's delta)とも呼ばれる。これを最初に定義して量子力学の定式化に用いた物理学者ポール・ディラックに因み、この名称が付いている。デルタ関数は古典的な意味での関数ではないシュワルツ超関数(英: distribution)の最初の例になっている。 ディラックのデルタの「関数」としての性質は、形式的に次のように述べることができる。まず、f(x) として実直線上常に一定の値 1 をとる関数をとり、デルタ関数をデルタ関数自身と f(x) = 1 との積であると見ることにより である。一方、積分値が f の x = 0 での値にしかよらないことから でなければならないが、その上で積分値が 0 でない有限の値をとるためには が満たされなければならない。 (ja)
rdfs:label
  • ディラックのデルタ関数 (ja)
  • ディラックのデルタ関数 (ja)
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:wikiPageDisambiguates of
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is prop-ja:knownFor of
is owl:sameAs of
is foaf:primaryTopic of