Property |
Value |
dbo:abstract
|
- 一様可積分性(いちようかせきぶんせい、英: uniform integrability)とは、数学の実解析、関数解析学および測度論の分野における重要な概念で、ルベーグ可積分性の概念を拡張し、条件付き期待値やマルチンゲールの理論の発展のために重要な役割を担うものである。確率変数の収束において、この性質は、確率の意味において収束する確率変数が の意味において収束するための必要十分条件を与える。 (ja)
- 一様可積分性(いちようかせきぶんせい、英: uniform integrability)とは、数学の実解析、関数解析学および測度論の分野における重要な概念で、ルベーグ可積分性の概念を拡張し、条件付き期待値やマルチンゲールの理論の発展のために重要な役割を担うものである。確率変数の収束において、この性質は、確率の意味において収束する確率変数が の意味において収束するための必要十分条件を与える。 (ja)
|
dbo:thumbnail
| |
dbo:wikiPageID
| |
dbo:wikiPageLength
|
- 4745 (xsd:nonNegativeInteger)
|
dbo:wikiPageRevisionID
| |
dbo:wikiPageWikiLink
| |
prop-en:wikiPageUsesTemplate
| |
dct:subject
| |
rdfs:comment
|
- 一様可積分性(いちようかせきぶんせい、英: uniform integrability)とは、数学の実解析、関数解析学および測度論の分野における重要な概念で、ルベーグ可積分性の概念を拡張し、条件付き期待値やマルチンゲールの理論の発展のために重要な役割を担うものである。確率変数の収束において、この性質は、確率の意味において収束する確率変数が の意味において収束するための必要十分条件を与える。 (ja)
- 一様可積分性(いちようかせきぶんせい、英: uniform integrability)とは、数学の実解析、関数解析学および測度論の分野における重要な概念で、ルベーグ可積分性の概念を拡張し、条件付き期待値やマルチンゲールの理論の発展のために重要な役割を担うものである。確率変数の収束において、この性質は、確率の意味において収束する確率変数が の意味において収束するための必要十分条件を与える。 (ja)
|
rdfs:label
| |
owl:sameAs
| |
prov:wasDerivedFrom
| |
foaf:depiction
| |
foaf:isPrimaryTopicOf
| |
is dbo:wikiPageWikiLink
of | |
is owl:sameAs
of | |
is foaf:primaryTopic
of | |