確率空間(かくりつくうかん、英: probability space)とは、可測空間 (S, M) に確率測度 μ(S) = 1 を入れた測度空間 (S, M, μ) をいう。根元事象が無数にあるなどの場合は、確率をラプラスの古典的確率で定義することができず、確率を公理的確率として定義することがアンドレイ・コルモゴロフにより提唱されている。確率空間とは、そのために必要な概念である。

Property Value
dbo:abstract
  • 確率空間(かくりつくうかん、英: probability space)とは、可測空間 (S, M) に確率測度 μ(S) = 1 を入れた測度空間 (S, M, μ) をいう。根元事象が無数にあるなどの場合は、確率をラプラスの古典的確率で定義することができず、確率を公理的確率として定義することがアンドレイ・コルモゴロフにより提唱されている。確率空間とは、そのために必要な概念である。 (ja)
  • 確率空間(かくりつくうかん、英: probability space)とは、可測空間 (S, M) に確率測度 μ(S) = 1 を入れた測度空間 (S, M, μ) をいう。根元事象が無数にあるなどの場合は、確率をラプラスの古典的確率で定義することができず、確率を公理的確率として定義することがアンドレイ・コルモゴロフにより提唱されている。確率空間とは、そのために必要な概念である。 (ja)
dbo:wikiPageID
  • 98099 (xsd:integer)
dbo:wikiPageLength
  • 3455 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 89298486 (xsd:integer)
dbo:wikiPageWikiLink
prop-ja:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • 確率空間(かくりつくうかん、英: probability space)とは、可測空間 (S, M) に確率測度 μ(S) = 1 を入れた測度空間 (S, M, μ) をいう。根元事象が無数にあるなどの場合は、確率をラプラスの古典的確率で定義することができず、確率を公理的確率として定義することがアンドレイ・コルモゴロフにより提唱されている。確率空間とは、そのために必要な概念である。 (ja)
  • 確率空間(かくりつくうかん、英: probability space)とは、可測空間 (S, M) に確率測度 μ(S) = 1 を入れた測度空間 (S, M, μ) をいう。根元事象が無数にあるなどの場合は、確率をラプラスの古典的確率で定義することができず、確率を公理的確率として定義することがアンドレイ・コルモゴロフにより提唱されている。確率空間とは、そのために必要な概念である。 (ja)
rdfs:label
  • 確率空間 (ja)
  • 確率空間 (ja)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageWikiLink of
is owl:sameAs of
is foaf:primaryTopic of