Property |
Value |
dbo:abstract
|
- 解析学におけるリプシッツ連続性(リプシッツれんぞくせい、英: Lipschitz continuity)は、ルドルフ・リプシッツに名を因む、函数のより強い形の一様連続性である。直観的には、リプシッツ連続函数は変化の速さが制限される。即ち、適当な有限値の実数が存在して、その函数のグラフ上の任意の二点を結ぶ直線の傾きの絶対値はその実数を超えない。この上界をその函数の「リプシッツ定数」(あるいは)と呼ぶ。例えば一階微分が有界な任意の函数はリプシッツである。 微分方程式論において、リプシッツ連続性は初期値問題の解の存在と一意性を保証するピカール–リンデレフの定理の中心的な条件である。リプシッツ連続性の特別な場合で、縮小性はバナッハの不動点定理において用いられる。 実数直線の有界閉集合上で定義される函数に関して、以下のような包含関係の鎖が知られている: 連続的微分可能 ⊆ リプシッツ連続 ⊆ α-ヘルダー連続 (0 < α ≤1) ⊆ 一様連続 ⊆ 連続函数. また、 リプシッツ連続 ⊆ 絶対連続 ⊆ 有界変動 ⊆ 殆ど至る所微分可能 も成り立つ。 (ja)
- 解析学におけるリプシッツ連続性(リプシッツれんぞくせい、英: Lipschitz continuity)は、ルドルフ・リプシッツに名を因む、函数のより強い形の一様連続性である。直観的には、リプシッツ連続函数は変化の速さが制限される。即ち、適当な有限値の実数が存在して、その函数のグラフ上の任意の二点を結ぶ直線の傾きの絶対値はその実数を超えない。この上界をその函数の「リプシッツ定数」(あるいは)と呼ぶ。例えば一階微分が有界な任意の函数はリプシッツである。 微分方程式論において、リプシッツ連続性は初期値問題の解の存在と一意性を保証するピカール–リンデレフの定理の中心的な条件である。リプシッツ連続性の特別な場合で、縮小性はバナッハの不動点定理において用いられる。 実数直線の有界閉集合上で定義される函数に関して、以下のような包含関係の鎖が知られている: 連続的微分可能 ⊆ リプシッツ連続 ⊆ α-ヘルダー連続 (0 < α ≤1) ⊆ 一様連続 ⊆ 連続函数. また、 リプシッツ連続 ⊆ 絶対連続 ⊆ 有界変動 ⊆ 殆ど至る所微分可能 も成り立つ。 (ja)
|
dbo:thumbnail
| |
dbo:wikiPageID
| |
dbo:wikiPageLength
|
- 9390 (xsd:nonNegativeInteger)
|
dbo:wikiPageRevisionID
| |
dbo:wikiPageWikiLink
| |
prop-ja:wikiPageUsesTemplate
| |
dct:subject
| |
rdfs:comment
|
- 解析学におけるリプシッツ連続性(リプシッツれんぞくせい、英: Lipschitz continuity)は、ルドルフ・リプシッツに名を因む、函数のより強い形の一様連続性である。直観的には、リプシッツ連続函数は変化の速さが制限される。即ち、適当な有限値の実数が存在して、その函数のグラフ上の任意の二点を結ぶ直線の傾きの絶対値はその実数を超えない。この上界をその函数の「リプシッツ定数」(あるいは)と呼ぶ。例えば一階微分が有界な任意の函数はリプシッツである。 微分方程式論において、リプシッツ連続性は初期値問題の解の存在と一意性を保証するピカール–リンデレフの定理の中心的な条件である。リプシッツ連続性の特別な場合で、縮小性はバナッハの不動点定理において用いられる。 実数直線の有界閉集合上で定義される函数に関して、以下のような包含関係の鎖が知られている: 連続的微分可能 ⊆ リプシッツ連続 ⊆ α-ヘルダー連続 (0 < α ≤1) ⊆ 一様連続 ⊆ 連続函数. また、 リプシッツ連続 ⊆ 絶対連続 ⊆ 有界変動 ⊆ 殆ど至る所微分可能 も成り立つ。 (ja)
- 解析学におけるリプシッツ連続性(リプシッツれんぞくせい、英: Lipschitz continuity)は、ルドルフ・リプシッツに名を因む、函数のより強い形の一様連続性である。直観的には、リプシッツ連続函数は変化の速さが制限される。即ち、適当な有限値の実数が存在して、その函数のグラフ上の任意の二点を結ぶ直線の傾きの絶対値はその実数を超えない。この上界をその函数の「リプシッツ定数」(あるいは)と呼ぶ。例えば一階微分が有界な任意の函数はリプシッツである。 微分方程式論において、リプシッツ連続性は初期値問題の解の存在と一意性を保証するピカール–リンデレフの定理の中心的な条件である。リプシッツ連続性の特別な場合で、縮小性はバナッハの不動点定理において用いられる。 実数直線の有界閉集合上で定義される函数に関して、以下のような包含関係の鎖が知られている: 連続的微分可能 ⊆ リプシッツ連続 ⊆ α-ヘルダー連続 (0 < α ≤1) ⊆ 一様連続 ⊆ 連続函数. また、 リプシッツ連続 ⊆ 絶対連続 ⊆ 有界変動 ⊆ 殆ど至る所微分可能 も成り立つ。 (ja)
|
rdfs:label
|
- リプシッツ連続 (ja)
- リプシッツ連続 (ja)
|
owl:sameAs
| |
prov:wasDerivedFrom
| |
foaf:depiction
| |
foaf:isPrimaryTopicOf
| |
is dbo:wikiPageRedirects
of | |
is dbo:wikiPageWikiLink
of | |
is owl:sameAs
of | |
is foaf:primaryTopic
of | |