数学の函数解析学の分野において、クレイン=ミルマンの定理(クレイン=ミルマンのていり、英: Krein–Milman theorem)とは、位相ベクトル空間内の凸集合に関するある命題である。この定理の容易に可視化できる特別な場合では、与えられた凸多角形に対し、その角の部分だけで全体の形を復元できるということが述べられている。しかしその多角形が凸でない場合には、角として与えられた点から多角形を描く方法が多く存在し得るため、この定理の内容は偽となる。 正式には、 を(ハウスドルフと仮定される)局所凸位相ベクトル空間とし、 を のコンパクトな凸部分集合とするとき、 はその極点の閉凸包となることが、この定理では主張されている。 上述の閉凸包は、 を含むすべての の閉部分集合の共通部分として定義される。そしてそれは、位相ベクトル空間内の凸包の閉包と等しいことが知られている。定理の証明は、ある部分では容易であるが、「十分な」極点の存在を示すという点に主な難しさがある。 マルク・クレインとによって証明された元の定理の内容は、ここで述べたものより若干一般性に欠けるものとなっている。

Property Value
dbo:abstract
  • 数学の函数解析学の分野において、クレイン=ミルマンの定理(クレイン=ミルマンのていり、英: Krein–Milman theorem)とは、位相ベクトル空間内の凸集合に関するある命題である。この定理の容易に可視化できる特別な場合では、与えられた凸多角形に対し、その角の部分だけで全体の形を復元できるということが述べられている。しかしその多角形が凸でない場合には、角として与えられた点から多角形を描く方法が多く存在し得るため、この定理の内容は偽となる。 正式には、 を(ハウスドルフと仮定される)局所凸位相ベクトル空間とし、 を のコンパクトな凸部分集合とするとき、 はその極点の閉凸包となることが、この定理では主張されている。 上述の閉凸包は、 を含むすべての の閉部分集合の共通部分として定義される。そしてそれは、位相ベクトル空間内の凸包の閉包と等しいことが知られている。定理の証明は、ある部分では容易であるが、「十分な」極点の存在を示すという点に主な難しさがある。 マルク・クレインとによって証明された元の定理の内容は、ここで述べたものより若干一般性に欠けるものとなっている。 その定理より以前に、ヘルマン・ミンコフスキーは、 が有限次元であるなら はその極点の集合の凸包と等しいことを示していた。クレイン=ミルマンの定理は、その結果を任意の局所凸空間 に対して一般化するものであったが、閉包が必要となり得るという注意も付されていた。 (ja)
  • 数学の函数解析学の分野において、クレイン=ミルマンの定理(クレイン=ミルマンのていり、英: Krein–Milman theorem)とは、位相ベクトル空間内の凸集合に関するある命題である。この定理の容易に可視化できる特別な場合では、与えられた凸多角形に対し、その角の部分だけで全体の形を復元できるということが述べられている。しかしその多角形が凸でない場合には、角として与えられた点から多角形を描く方法が多く存在し得るため、この定理の内容は偽となる。 正式には、 を(ハウスドルフと仮定される)局所凸位相ベクトル空間とし、 を のコンパクトな凸部分集合とするとき、 はその極点の閉凸包となることが、この定理では主張されている。 上述の閉凸包は、 を含むすべての の閉部分集合の共通部分として定義される。そしてそれは、位相ベクトル空間内の凸包の閉包と等しいことが知られている。定理の証明は、ある部分では容易であるが、「十分な」極点の存在を示すという点に主な難しさがある。 マルク・クレインとによって証明された元の定理の内容は、ここで述べたものより若干一般性に欠けるものとなっている。 その定理より以前に、ヘルマン・ミンコフスキーは、 が有限次元であるなら はその極点の集合の凸包と等しいことを示していた。クレイン=ミルマンの定理は、その結果を任意の局所凸空間 に対して一般化するものであったが、閉包が必要となり得るという注意も付されていた。 (ja)
dbo:thumbnail
dbo:wikiPageID
  • 3082387 (xsd:integer)
dbo:wikiPageLength
  • 3038 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 91225254 (xsd:integer)
dbo:wikiPageWikiLink
prop-ja:id
  • 35921 (xsd:integer)
prop-ja:title
  • Krein–Milman theorem (ja)
  • Krein–Milman theorem (ja)
prop-ja:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • 数学の函数解析学の分野において、クレイン=ミルマンの定理(クレイン=ミルマンのていり、英: Krein–Milman theorem)とは、位相ベクトル空間内の凸集合に関するある命題である。この定理の容易に可視化できる特別な場合では、与えられた凸多角形に対し、その角の部分だけで全体の形を復元できるということが述べられている。しかしその多角形が凸でない場合には、角として与えられた点から多角形を描く方法が多く存在し得るため、この定理の内容は偽となる。 正式には、 を(ハウスドルフと仮定される)局所凸位相ベクトル空間とし、 を のコンパクトな凸部分集合とするとき、 はその極点の閉凸包となることが、この定理では主張されている。 上述の閉凸包は、 を含むすべての の閉部分集合の共通部分として定義される。そしてそれは、位相ベクトル空間内の凸包の閉包と等しいことが知られている。定理の証明は、ある部分では容易であるが、「十分な」極点の存在を示すという点に主な難しさがある。 マルク・クレインとによって証明された元の定理の内容は、ここで述べたものより若干一般性に欠けるものとなっている。 (ja)
  • 数学の函数解析学の分野において、クレイン=ミルマンの定理(クレイン=ミルマンのていり、英: Krein–Milman theorem)とは、位相ベクトル空間内の凸集合に関するある命題である。この定理の容易に可視化できる特別な場合では、与えられた凸多角形に対し、その角の部分だけで全体の形を復元できるということが述べられている。しかしその多角形が凸でない場合には、角として与えられた点から多角形を描く方法が多く存在し得るため、この定理の内容は偽となる。 正式には、 を(ハウスドルフと仮定される)局所凸位相ベクトル空間とし、 を のコンパクトな凸部分集合とするとき、 はその極点の閉凸包となることが、この定理では主張されている。 上述の閉凸包は、 を含むすべての の閉部分集合の共通部分として定義される。そしてそれは、位相ベクトル空間内の凸包の閉包と等しいことが知られている。定理の証明は、ある部分では容易であるが、「十分な」極点の存在を示すという点に主な難しさがある。 マルク・クレインとによって証明された元の定理の内容は、ここで述べたものより若干一般性に欠けるものとなっている。 (ja)
rdfs:label
  • クレイン=ミルマンの定理 (ja)
  • クレイン=ミルマンの定理 (ja)
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is prop-ja:knownFor of
is owl:sameAs of
is foaf:primaryTopic of