回帰(かいき、(英: regression)とは、統計学において、Y が連続値の時にデータに Y = f(X) というモデル(「定量的な関係の構造」)を当てはめること。別の言い方では、連続尺度の従属変数(目的変数)Y と独立変数(説明変数)X の間にモデルを当てはめること。X が1次元ならば単回帰、X が2次元以上ならば重回帰と言う。Y が離散の場合は分類と言う。 回帰分析(かいきぶんせき、(英: regression analysis)とは、回帰により分析すること。 回帰で使われる、最も基本的なモデルは という形式の線形回帰である。

Property Value
dbo:abstract
  • 回帰(かいき、(英: regression)とは、統計学において、Y が連続値の時にデータに Y = f(X) というモデル(「定量的な関係の構造」)を当てはめること。別の言い方では、連続尺度の従属変数(目的変数)Y と独立変数(説明変数)X の間にモデルを当てはめること。X が1次元ならば単回帰、X が2次元以上ならば重回帰と言う。Y が離散の場合は分類と言う。 回帰分析(かいきぶんせき、(英: regression analysis)とは、回帰により分析すること。 回帰で使われる、最も基本的なモデルは という形式の線形回帰である。 (ja)
  • 回帰(かいき、(英: regression)とは、統計学において、Y が連続値の時にデータに Y = f(X) というモデル(「定量的な関係の構造」)を当てはめること。別の言い方では、連続尺度の従属変数(目的変数)Y と独立変数(説明変数)X の間にモデルを当てはめること。X が1次元ならば単回帰、X が2次元以上ならば重回帰と言う。Y が離散の場合は分類と言う。 回帰分析(かいきぶんせき、(英: regression analysis)とは、回帰により分析すること。 回帰で使われる、最も基本的なモデルは という形式の線形回帰である。 (ja)
dbo:thumbnail
dbo:wikiPageID
  • 33969 (xsd:integer)
dbo:wikiPageLength
  • 3389 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 90212755 (xsd:integer)
dbo:wikiPageWikiLink
prop-en:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • 回帰(かいき、(英: regression)とは、統計学において、Y が連続値の時にデータに Y = f(X) というモデル(「定量的な関係の構造」)を当てはめること。別の言い方では、連続尺度の従属変数(目的変数)Y と独立変数(説明変数)X の間にモデルを当てはめること。X が1次元ならば単回帰、X が2次元以上ならば重回帰と言う。Y が離散の場合は分類と言う。 回帰分析(かいきぶんせき、(英: regression analysis)とは、回帰により分析すること。 回帰で使われる、最も基本的なモデルは という形式の線形回帰である。 (ja)
  • 回帰(かいき、(英: regression)とは、統計学において、Y が連続値の時にデータに Y = f(X) というモデル(「定量的な関係の構造」)を当てはめること。別の言い方では、連続尺度の従属変数(目的変数)Y と独立変数(説明変数)X の間にモデルを当てはめること。X が1次元ならば単回帰、X が2次元以上ならば重回帰と言う。Y が離散の場合は分類と言う。 回帰分析(かいきぶんせき、(英: regression analysis)とは、回帰により分析すること。 回帰で使われる、最も基本的なモデルは という形式の線形回帰である。 (ja)
rdfs:label
  • 回帰分析 (ja)
  • 回帰分析 (ja)
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:wikiPageDisambiguates of
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is owl:sameAs of
is foaf:primaryTopic of