初等幾何学における解析幾何学(かいせききかがく、英: analytic geometry )あるいは座標幾何学(ざひょうきかがく、英: coordinate geometry )、デカルト幾何学(デカルトきかがく、英: Cartesian geometry )は、座標を用いて代数的に図形を調べる幾何学をいう。座標を用いるという点において、(より古典的な、ユークリッドの原論にもあるような)点や直線などがどのような公理に従うかということのみによって図形を調べる綜合幾何学 とは対照的である。座標を利用することにより、図形のもつ性質を座標のあいだにあらわれる関係式として特徴づけたり、数や式として図形を取り扱ったりすることができる。 ふつうは(二次元)平面上の点、直線などを扱う(平面解析幾何)か(三次元)空間内のそれらを扱う(立体解析幾何)。

Property Value
dbo:abstract
  • 初等幾何学における解析幾何学(かいせききかがく、英: analytic geometry )あるいは座標幾何学(ざひょうきかがく、英: coordinate geometry )、デカルト幾何学(デカルトきかがく、英: Cartesian geometry )は、座標を用いて代数的に図形を調べる幾何学をいう。座標を用いるという点において、(より古典的な、ユークリッドの原論にもあるような)点や直線などがどのような公理に従うかということのみによって図形を調べる綜合幾何学 とは対照的である。座標を利用することにより、図形のもつ性質を座標のあいだにあらわれる関係式として特徴づけたり、数や式として図形を取り扱ったりすることができる。 ふつうは(二次元)平面上の点、直線などを扱う(平面解析幾何)か(三次元)空間内のそれらを扱う(立体解析幾何)。 (ja)
  • 初等幾何学における解析幾何学(かいせききかがく、英: analytic geometry )あるいは座標幾何学(ざひょうきかがく、英: coordinate geometry )、デカルト幾何学(デカルトきかがく、英: Cartesian geometry )は、座標を用いて代数的に図形を調べる幾何学をいう。座標を用いるという点において、(より古典的な、ユークリッドの原論にもあるような)点や直線などがどのような公理に従うかということのみによって図形を調べる綜合幾何学 とは対照的である。座標を利用することにより、図形のもつ性質を座標のあいだにあらわれる関係式として特徴づけたり、数や式として図形を取り扱ったりすることができる。 ふつうは(二次元)平面上の点、直線などを扱う(平面解析幾何)か(三次元)空間内のそれらを扱う(立体解析幾何)。 (ja)
dbo:thumbnail
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 68241 (xsd:integer)
dbo:wikiPageLength
  • 2325 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 91278419 (xsd:integer)
dbo:wikiPageWikiLink
prop-en:title
  • Analytic Geometry (ja)
  • analytic geometry (ja)
  • Analytic Geometry (ja)
  • analytic geometry (ja)
prop-en:urlname
  • AnalyticGeometry (ja)
  • AnalyticGeometry (ja)
prop-en:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • 初等幾何学における解析幾何学(かいせききかがく、英: analytic geometry )あるいは座標幾何学(ざひょうきかがく、英: coordinate geometry )、デカルト幾何学(デカルトきかがく、英: Cartesian geometry )は、座標を用いて代数的に図形を調べる幾何学をいう。座標を用いるという点において、(より古典的な、ユークリッドの原論にもあるような)点や直線などがどのような公理に従うかということのみによって図形を調べる綜合幾何学 とは対照的である。座標を利用することにより、図形のもつ性質を座標のあいだにあらわれる関係式として特徴づけたり、数や式として図形を取り扱ったりすることができる。 ふつうは(二次元)平面上の点、直線などを扱う(平面解析幾何)か(三次元)空間内のそれらを扱う(立体解析幾何)。 (ja)
  • 初等幾何学における解析幾何学(かいせききかがく、英: analytic geometry )あるいは座標幾何学(ざひょうきかがく、英: coordinate geometry )、デカルト幾何学(デカルトきかがく、英: Cartesian geometry )は、座標を用いて代数的に図形を調べる幾何学をいう。座標を用いるという点において、(より古典的な、ユークリッドの原論にもあるような)点や直線などがどのような公理に従うかということのみによって図形を調べる綜合幾何学 とは対照的である。座標を利用することにより、図形のもつ性質を座標のあいだにあらわれる関係式として特徴づけたり、数や式として図形を取り扱ったりすることができる。 ふつうは(二次元)平面上の点、直線などを扱う(平面解析幾何)か(三次元)空間内のそれらを扱う(立体解析幾何)。 (ja)
rdfs:label
  • 解析幾何学 (ja)
  • 解析幾何学 (ja)
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is prop-en:knownFor of
is owl:sameAs of
is foaf:primaryTopic of