Property |
Value |
dbo:abstract
|
- 数学の線型代数学において、体 F 上のベクトル空間 V とその基底 が与えられたとき、その双対集合(そうついしゅうごう、英: dual set)とは、(代数的)双対空間 V * := HomF(V, F) 内のベクトルの集合 で、B と B * が二重直交系を構成するもののことを言う。これは でクロネッカーのデルタを表すとき を満たすことを指す。双対集合 B * は常に線型独立であるが、V * を張るのは V が有限次元であるとき、かつそのときに限る。双対集合 B * が V * を張るとき、B * は基底 B に対する双対基底(そうついきてい、英: dual basis)と呼ばれる。 (ja)
- 数学の線型代数学において、体 F 上のベクトル空間 V とその基底 が与えられたとき、その双対集合(そうついしゅうごう、英: dual set)とは、(代数的)双対空間 V * := HomF(V, F) 内のベクトルの集合 で、B と B * が二重直交系を構成するもののことを言う。これは でクロネッカーのデルタを表すとき を満たすことを指す。双対集合 B * は常に線型独立であるが、V * を張るのは V が有限次元であるとき、かつそのときに限る。双対集合 B * が V * を張るとき、B * は基底 B に対する双対基底(そうついきてい、英: dual basis)と呼ばれる。 (ja)
|
dbo:thumbnail
| |
dbo:wikiPageID
| |
dbo:wikiPageLength
|
- 6585 (xsd:nonNegativeInteger)
|
dbo:wikiPageRevisionID
| |
dbo:wikiPageWikiLink
| |
prop-en:wikiPageUsesTemplate
| |
dct:subject
| |
rdfs:comment
|
- 数学の線型代数学において、体 F 上のベクトル空間 V とその基底 が与えられたとき、その双対集合(そうついしゅうごう、英: dual set)とは、(代数的)双対空間 V * := HomF(V, F) 内のベクトルの集合 で、B と B * が二重直交系を構成するもののことを言う。これは でクロネッカーのデルタを表すとき を満たすことを指す。双対集合 B * は常に線型独立であるが、V * を張るのは V が有限次元であるとき、かつそのときに限る。双対集合 B * が V * を張るとき、B * は基底 B に対する双対基底(そうついきてい、英: dual basis)と呼ばれる。 (ja)
- 数学の線型代数学において、体 F 上のベクトル空間 V とその基底 が与えられたとき、その双対集合(そうついしゅうごう、英: dual set)とは、(代数的)双対空間 V * := HomF(V, F) 内のベクトルの集合 で、B と B * が二重直交系を構成するもののことを言う。これは でクロネッカーのデルタを表すとき を満たすことを指す。双対集合 B * は常に線型独立であるが、V * を張るのは V が有限次元であるとき、かつそのときに限る。双対集合 B * が V * を張るとき、B * は基底 B に対する双対基底(そうついきてい、英: dual basis)と呼ばれる。 (ja)
|
rdfs:label
| |
owl:sameAs
| |
prov:wasDerivedFrom
| |
foaf:depiction
| |
foaf:isPrimaryTopicOf
| |
is dbo:wikiPageWikiLink
of | |
is owl:sameAs
of | |
is foaf:primaryTopic
of | |