セル・オートマトン(英: cellular automaton、略称:CA)とは、格子状のセルと単純な規則による、離散的計算モデルである。計算可能性理論、数学、物理学、複雑適応系、数理生物学、微小構造モデリングなどの研究で利用される。非常に単純化されたモデルであるが、生命現象、結晶の成長、乱流といった複雑な自然現象を模した、驚くほどに豊かな結果を与えてくれる。 正確な発音に近いセルラ・オートマトンとも呼ばれることがある。セルは「細胞」「小部屋」、セルラは「細胞状の」、オートマトンは「からくり」「自動機械」を意味する。他に「セル空間」「埋め尽くしオートマトン」「homogeneous structure」「tessellation structure」「iterative array」といった呼称もある。

Property Value
dbo:abstract
  • セル・オートマトン(英: cellular automaton、略称:CA)とは、格子状のセルと単純な規則による、離散的計算モデルである。計算可能性理論、数学、物理学、複雑適応系、数理生物学、微小構造モデリングなどの研究で利用される。非常に単純化されたモデルであるが、生命現象、結晶の成長、乱流といった複雑な自然現象を模した、驚くほどに豊かな結果を与えてくれる。 正確な発音に近いセルラ・オートマトンとも呼ばれることがある。セルは「細胞」「小部屋」、セルラは「細胞状の」、オートマトンは「からくり」「自動機械」を意味する。他に「セル空間」「埋め尽くしオートマトン」「homogeneous structure」「tessellation structure」「iterative array」といった呼称もある。 有限種類の(多くは2から数十種類の)状態を持つセル(細胞のような単位)によってセル・オートマトンは構成され、離散的な時間で個々のセルの状態が変化する。その変化は、ある時刻 t においてのセルの状態、および近傍のセルの内部状態によって、次の時刻t+1 、すなわち新たな「ジェネレーション」(世代)での各セルの状態が決定される。初期状態(時刻 t=0)は、各セルの状態を設定することで選択される。次の世代(t が1進んだ状態)は、事前に設定された「規則」(一般に何らかの数学的関数)に従って初期状態でのそのセルおよび近傍の状態から決定される。セルの状態を更新する規則は一般にどのセルでも同一であり、途中で変更されず、並んでいる全セルに同時に適用される。ただしや非同期セル・オートマトンは例外である。 その概念は1940年代、ロスアラモス国立研究所で同僚だったスタニスワフ・ウラムとジョン・フォン・ノイマンが発見した。その後細々と研究されていたが、1970年代に2次元セル・オートマトンの一種ライフゲームが登場すると注目されるようになった。1980年代にはスティーブン・ウルフラムが1次元セル・オートマトンまたはを体系的に研究し、一部の規則群がチューリング完全であることを示した。彼が2002年に出版した A New Kind of Science では、セル・オートマトンが様々な科学の領域で応用できると主張している。 (ja)
  • セル・オートマトン(英: cellular automaton、略称:CA)とは、格子状のセルと単純な規則による、離散的計算モデルである。計算可能性理論、数学、物理学、複雑適応系、数理生物学、微小構造モデリングなどの研究で利用される。非常に単純化されたモデルであるが、生命現象、結晶の成長、乱流といった複雑な自然現象を模した、驚くほどに豊かな結果を与えてくれる。 正確な発音に近いセルラ・オートマトンとも呼ばれることがある。セルは「細胞」「小部屋」、セルラは「細胞状の」、オートマトンは「からくり」「自動機械」を意味する。他に「セル空間」「埋め尽くしオートマトン」「homogeneous structure」「tessellation structure」「iterative array」といった呼称もある。 有限種類の(多くは2から数十種類の)状態を持つセル(細胞のような単位)によってセル・オートマトンは構成され、離散的な時間で個々のセルの状態が変化する。その変化は、ある時刻 t においてのセルの状態、および近傍のセルの内部状態によって、次の時刻t+1 、すなわち新たな「ジェネレーション」(世代)での各セルの状態が決定される。初期状態(時刻 t=0)は、各セルの状態を設定することで選択される。次の世代(t が1進んだ状態)は、事前に設定された「規則」(一般に何らかの数学的関数)に従って初期状態でのそのセルおよび近傍の状態から決定される。セルの状態を更新する規則は一般にどのセルでも同一であり、途中で変更されず、並んでいる全セルに同時に適用される。ただしや非同期セル・オートマトンは例外である。 その概念は1940年代、ロスアラモス国立研究所で同僚だったスタニスワフ・ウラムとジョン・フォン・ノイマンが発見した。その後細々と研究されていたが、1970年代に2次元セル・オートマトンの一種ライフゲームが登場すると注目されるようになった。1980年代にはスティーブン・ウルフラムが1次元セル・オートマトンまたはを体系的に研究し、一部の規則群がチューリング完全であることを示した。彼が2002年に出版した A New Kind of Science では、セル・オートマトンが様々な科学の領域で応用できると主張している。 (ja)
dbo:thumbnail
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 46664 (xsd:integer)
dbo:wikiPageLength
  • 40560 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 89241194 (xsd:integer)
dbo:wikiPageWikiLink
prop-ja:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • セル・オートマトン(英: cellular automaton、略称:CA)とは、格子状のセルと単純な規則による、離散的計算モデルである。計算可能性理論、数学、物理学、複雑適応系、数理生物学、微小構造モデリングなどの研究で利用される。非常に単純化されたモデルであるが、生命現象、結晶の成長、乱流といった複雑な自然現象を模した、驚くほどに豊かな結果を与えてくれる。 正確な発音に近いセルラ・オートマトンとも呼ばれることがある。セルは「細胞」「小部屋」、セルラは「細胞状の」、オートマトンは「からくり」「自動機械」を意味する。他に「セル空間」「埋め尽くしオートマトン」「homogeneous structure」「tessellation structure」「iterative array」といった呼称もある。 (ja)
  • セル・オートマトン(英: cellular automaton、略称:CA)とは、格子状のセルと単純な規則による、離散的計算モデルである。計算可能性理論、数学、物理学、複雑適応系、数理生物学、微小構造モデリングなどの研究で利用される。非常に単純化されたモデルであるが、生命現象、結晶の成長、乱流といった複雑な自然現象を模した、驚くほどに豊かな結果を与えてくれる。 正確な発音に近いセルラ・オートマトンとも呼ばれることがある。セルは「細胞」「小部屋」、セルラは「細胞状の」、オートマトンは「からくり」「自動機械」を意味する。他に「セル空間」「埋め尽くしオートマトン」「homogeneous structure」「tessellation structure」「iterative array」といった呼称もある。 (ja)
rdfs:label
  • セル・オートマトン (ja)
  • セル・オートマトン (ja)
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:wikiPageDisambiguates of
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is owl:sameAs of
is foaf:primaryTopic of