一般システム理論(いっぱん-りろん、General System Theory (GST))は、ルートヴィヒ・フォン・ベルタランフィが、生命現象に対する機械論を排して唱えた理論である。 20世紀前半に提唱された、現象のマクロな挙動を直接的にモデル化して扱う科学理論のことである。史上初めて科学で非線形現象を説明可能にし、現代のハイテク製品を支えるシステム工学やコンピュータシステムの設計にも応用された。例えば、航空機や情報システムなどの設計で作成されるブロック図,データフロー図はシステム理論の実践である。ソフトウェアの入出力なども、システム理論で言う所の入出力に対応する。 19世紀までの近代科学では、原子1つ1つの挙動の寄せ集めで全ての現象を説明可能とする要素還元主義が一般的(つまりは全ての現象が線型という扱い)であり、3つ以上の原子が相互作用して起きる非線型な現象を形而上学の概念である「全体性」として説明してきた。近代科学の時代は、非線形現象について、あたかも科学的に説明出来ない「生気」が物質に付随するかのように捉えられており、「生気」の実在を巡って激しい論争が起きていた。

Property Value
dbo:abstract
  • 一般システム理論(いっぱん-りろん、General System Theory (GST))は、ルートヴィヒ・フォン・ベルタランフィが、生命現象に対する機械論を排して唱えた理論である。 20世紀前半に提唱された、現象のマクロな挙動を直接的にモデル化して扱う科学理論のことである。史上初めて科学で非線形現象を説明可能にし、現代のハイテク製品を支えるシステム工学やコンピュータシステムの設計にも応用された。例えば、航空機や情報システムなどの設計で作成されるブロック図,データフロー図はシステム理論の実践である。ソフトウェアの入出力なども、システム理論で言う所の入出力に対応する。 19世紀までの近代科学では、原子1つ1つの挙動の寄せ集めで全ての現象を説明可能とする要素還元主義が一般的(つまりは全ての現象が線型という扱い)であり、3つ以上の原子が相互作用して起きる非線型な現象を形而上学の概念である「全体性」として説明してきた。近代科学の時代は、非線形現象について、あたかも科学的に説明出来ない「生気」が物質に付随するかのように捉えられており、「生気」の実在を巡って激しい論争が起きていた。 20世紀に入って、物理学に帰着した説明を行う要素還元主義の下で各分野の理論が成熟して来ると、各学術分野において、異分野の議論に同じような説明が多数存在する事が判明し始めた。この似た部分を抽出し、モデル化を行うことで、物理学に帰着しなくても現象の科学的な説明が行える可能性が出て来たと同時に、要素還元主義で「生気」と呼ばれた現象の客観的な説明可能性も見えてきた。その様な機運の高まりの中で、ルートヴィヒ・フォン・ベルタランフィにより、全体性の内実について、生物の構造をモデルとした有機構成による科学的な説明が行われ、多数の賛同者を集めると共に、生気論は影を潜めて行った。生物以外も含めた理論適用の過程で、全体性を支配する法則をシステムと呼び始めた。 システム理論の提唱により、全体性も科学的に説明可能となり、複雑系や自己組織化現象等、非線型な現象まで科学的にモデル化し、理解できるようになった。また、システム理論は、分野を跨いで同型な議論を再利用できるようにし、科学的な議論の効率化にも大きく貢献した。 1950年代に提唱者のルートヴィヒ・フォン・ベルタランフィを中心として、アナトール・ラポポート、ケネス・E・ボールディング、ウィリアム・ロス・アシュビー、マーガレット・ミード、グレゴリー・ベイトソンなど異なる分野の者たちが学際的な情報交換を目的として集まった「メイシー会議」で新しい学術分野の一つとして捉えられるようになった。線型な現象のみを扱う近代科学(特に要素還元主義)の時代が終焉を迎えたと共に、非線型な現象の機構を解明して利用する現代科学の時代が始まった。その後にブロック図で観測対象の構造を整理する手法が現れ、自動制御の設計が容易になった。以降の時代には(特に1960年代以降は)、システム的なアプローチを取らなければ設計が不可能な、非線形性を前提とした高度な自動制御機構(オートメーション,コンピュータシステム等)が次々と実用化され、高度な自動制御機構を前提とする現代社会を形成して行った。その過程で、システムエンジニアと言う職業が台頭した。その後、マイクロプロセッサの指数関数的な高性能化に伴い、1990年代からニューラルネットワーク、ファジィ、カオスの応用が急速に広まり出した。特にカオスは、天気予報やオートメーションから無線通信や光ファイバの高速化まで、現代社会を成立させる上で不可欠な理論として幅広く応用されている。最新のシステム理論はオートポイエーシスであり、クオリアのような主観現象の説明を試みている。 (ja)
  • 一般システム理論(いっぱん-りろん、General System Theory (GST))は、ルートヴィヒ・フォン・ベルタランフィが、生命現象に対する機械論を排して唱えた理論である。 20世紀前半に提唱された、現象のマクロな挙動を直接的にモデル化して扱う科学理論のことである。史上初めて科学で非線形現象を説明可能にし、現代のハイテク製品を支えるシステム工学やコンピュータシステムの設計にも応用された。例えば、航空機や情報システムなどの設計で作成されるブロック図,データフロー図はシステム理論の実践である。ソフトウェアの入出力なども、システム理論で言う所の入出力に対応する。 19世紀までの近代科学では、原子1つ1つの挙動の寄せ集めで全ての現象を説明可能とする要素還元主義が一般的(つまりは全ての現象が線型という扱い)であり、3つ以上の原子が相互作用して起きる非線型な現象を形而上学の概念である「全体性」として説明してきた。近代科学の時代は、非線形現象について、あたかも科学的に説明出来ない「生気」が物質に付随するかのように捉えられており、「生気」の実在を巡って激しい論争が起きていた。 20世紀に入って、物理学に帰着した説明を行う要素還元主義の下で各分野の理論が成熟して来ると、各学術分野において、異分野の議論に同じような説明が多数存在する事が判明し始めた。この似た部分を抽出し、モデル化を行うことで、物理学に帰着しなくても現象の科学的な説明が行える可能性が出て来たと同時に、要素還元主義で「生気」と呼ばれた現象の客観的な説明可能性も見えてきた。その様な機運の高まりの中で、ルートヴィヒ・フォン・ベルタランフィにより、全体性の内実について、生物の構造をモデルとした有機構成による科学的な説明が行われ、多数の賛同者を集めると共に、生気論は影を潜めて行った。生物以外も含めた理論適用の過程で、全体性を支配する法則をシステムと呼び始めた。 システム理論の提唱により、全体性も科学的に説明可能となり、複雑系や自己組織化現象等、非線型な現象まで科学的にモデル化し、理解できるようになった。また、システム理論は、分野を跨いで同型な議論を再利用できるようにし、科学的な議論の効率化にも大きく貢献した。 1950年代に提唱者のルートヴィヒ・フォン・ベルタランフィを中心として、アナトール・ラポポート、ケネス・E・ボールディング、ウィリアム・ロス・アシュビー、マーガレット・ミード、グレゴリー・ベイトソンなど異なる分野の者たちが学際的な情報交換を目的として集まった「メイシー会議」で新しい学術分野の一つとして捉えられるようになった。線型な現象のみを扱う近代科学(特に要素還元主義)の時代が終焉を迎えたと共に、非線型な現象の機構を解明して利用する現代科学の時代が始まった。その後にブロック図で観測対象の構造を整理する手法が現れ、自動制御の設計が容易になった。以降の時代には(特に1960年代以降は)、システム的なアプローチを取らなければ設計が不可能な、非線形性を前提とした高度な自動制御機構(オートメーション,コンピュータシステム等)が次々と実用化され、高度な自動制御機構を前提とする現代社会を形成して行った。その過程で、システムエンジニアと言う職業が台頭した。その後、マイクロプロセッサの指数関数的な高性能化に伴い、1990年代からニューラルネットワーク、ファジィ、カオスの応用が急速に広まり出した。特にカオスは、天気予報やオートメーションから無線通信や光ファイバの高速化まで、現代社会を成立させる上で不可欠な理論として幅広く応用されている。最新のシステム理論はオートポイエーシスであり、クオリアのような主観現象の説明を試みている。 (ja)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 644629 (xsd:integer)
dbo:wikiPageLength
  • 14779 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 90874031 (xsd:integer)
dbo:wikiPageWikiLink
prop-ja:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • 一般システム理論(いっぱん-りろん、General System Theory (GST))は、ルートヴィヒ・フォン・ベルタランフィが、生命現象に対する機械論を排して唱えた理論である。 20世紀前半に提唱された、現象のマクロな挙動を直接的にモデル化して扱う科学理論のことである。史上初めて科学で非線形現象を説明可能にし、現代のハイテク製品を支えるシステム工学やコンピュータシステムの設計にも応用された。例えば、航空機や情報システムなどの設計で作成されるブロック図,データフロー図はシステム理論の実践である。ソフトウェアの入出力なども、システム理論で言う所の入出力に対応する。 19世紀までの近代科学では、原子1つ1つの挙動の寄せ集めで全ての現象を説明可能とする要素還元主義が一般的(つまりは全ての現象が線型という扱い)であり、3つ以上の原子が相互作用して起きる非線型な現象を形而上学の概念である「全体性」として説明してきた。近代科学の時代は、非線形現象について、あたかも科学的に説明出来ない「生気」が物質に付随するかのように捉えられており、「生気」の実在を巡って激しい論争が起きていた。 (ja)
  • 一般システム理論(いっぱん-りろん、General System Theory (GST))は、ルートヴィヒ・フォン・ベルタランフィが、生命現象に対する機械論を排して唱えた理論である。 20世紀前半に提唱された、現象のマクロな挙動を直接的にモデル化して扱う科学理論のことである。史上初めて科学で非線形現象を説明可能にし、現代のハイテク製品を支えるシステム工学やコンピュータシステムの設計にも応用された。例えば、航空機や情報システムなどの設計で作成されるブロック図,データフロー図はシステム理論の実践である。ソフトウェアの入出力なども、システム理論で言う所の入出力に対応する。 19世紀までの近代科学では、原子1つ1つの挙動の寄せ集めで全ての現象を説明可能とする要素還元主義が一般的(つまりは全ての現象が線型という扱い)であり、3つ以上の原子が相互作用して起きる非線型な現象を形而上学の概念である「全体性」として説明してきた。近代科学の時代は、非線形現象について、あたかも科学的に説明出来ない「生気」が物質に付随するかのように捉えられており、「生気」の実在を巡って激しい論争が起きていた。 (ja)
rdfs:label
  • 一般システム理論 (ja)
  • 一般システム理論 (ja)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is prop-ja:field of
is prop-ja:occupation of
is owl:sameAs of
is foaf:primaryTopic of