線型代数学において、ある次元 n のベクトル空間に対する基底は、n 個のベクトル α1, ..., αn の列で、その空間内のすべてのベクトルがそれら基底ベクトルの線型結合として一意的に表現されるという性質が成り立つ。作用素の行列表示も、同様にその選ばれた基底によって一意的に決定される。しばしば一つのベクトル空間に対して、複数の基底について考えることが望ましいことがあり、したがって線型代数学における本質的に重要な概念として、ある一つの基底に対するベクトルと作用素の座標に関する表現を、他の基底に対する同値な表現へと簡単に変換する、というものが存在する。そのような変換のことを基底変換(きていへんかん、英: change of basis)と呼ぶ。 以下ではベクトル空間の語を用い、記号 R は実数の体を意味するために用いられるが、そこで議論される結果は R が可換環であり「ベクトル空間」が「自由R-加群に置き換えられた場合にも成立する。

Property Value
dbo:abstract
  • 線型代数学において、ある次元 n のベクトル空間に対する基底は、n 個のベクトル α1, ..., αn の列で、その空間内のすべてのベクトルがそれら基底ベクトルの線型結合として一意的に表現されるという性質が成り立つ。作用素の行列表示も、同様にその選ばれた基底によって一意的に決定される。しばしば一つのベクトル空間に対して、複数の基底について考えることが望ましいことがあり、したがって線型代数学における本質的に重要な概念として、ある一つの基底に対するベクトルと作用素の座標に関する表現を、他の基底に対する同値な表現へと簡単に変換する、というものが存在する。そのような変換のことを基底変換(きていへんかん、英: change of basis)と呼ぶ。 以下ではベクトル空間の語を用い、記号 R は実数の体を意味するために用いられるが、そこで議論される結果は R が可換環であり「ベクトル空間」が「自由R-加群に置き換えられた場合にも成立する。 (ja)
  • 線型代数学において、ある次元 n のベクトル空間に対する基底は、n 個のベクトル α1, ..., αn の列で、その空間内のすべてのベクトルがそれら基底ベクトルの線型結合として一意的に表現されるという性質が成り立つ。作用素の行列表示も、同様にその選ばれた基底によって一意的に決定される。しばしば一つのベクトル空間に対して、複数の基底について考えることが望ましいことがあり、したがって線型代数学における本質的に重要な概念として、ある一つの基底に対するベクトルと作用素の座標に関する表現を、他の基底に対する同値な表現へと簡単に変換する、というものが存在する。そのような変換のことを基底変換(きていへんかん、英: change of basis)と呼ぶ。 以下ではベクトル空間の語を用い、記号 R は実数の体を意味するために用いられるが、そこで議論される結果は R が可換環であり「ベクトル空間」が「自由R-加群に置き換えられた場合にも成立する。 (ja)
dbo:thumbnail
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 2838765 (xsd:integer)
dbo:wikiPageLength
  • 11783 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 82379497 (xsd:integer)
dbo:wikiPageWikiLink
prop-en:align
  • right (ja)
  • right (ja)
prop-en:caption
  • 一つのベクトルが二つの異なる基底集合(紫と赤の矢印)によって表現される。 (ja)
  • あるベクトル(紫の矢印)の基底集合の線型結合によって新たなベクトル(赤の矢印)が得られる。もしも線型独立であるなら、それらは新たな基底集合を構成する。初めの基底集合を新たな基底集合へ関連付ける線型結合は線型変換へと拡張され、これが基底変換と呼ばれる。 (ja)
  • 一つのベクトルが二つの異なる基底集合(紫と赤の矢印)によって表現される。 (ja)
  • あるベクトル(紫の矢印)の基底集合の線型結合によって新たなベクトル(赤の矢印)が得られる。もしも線型独立であるなら、それらは新たな基底集合を構成する。初めの基底集合を新たな基底集合へ関連付ける線型結合は線型変換へと拡張され、これが基底変換と呼ばれる。 (ja)
prop-en:image
  • 259200.0 (dbd:second)
prop-en:width
  • 122 (xsd:integer)
  • 290 (xsd:integer)
prop-en:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • 線型代数学において、ある次元 n のベクトル空間に対する基底は、n 個のベクトル α1, ..., αn の列で、その空間内のすべてのベクトルがそれら基底ベクトルの線型結合として一意的に表現されるという性質が成り立つ。作用素の行列表示も、同様にその選ばれた基底によって一意的に決定される。しばしば一つのベクトル空間に対して、複数の基底について考えることが望ましいことがあり、したがって線型代数学における本質的に重要な概念として、ある一つの基底に対するベクトルと作用素の座標に関する表現を、他の基底に対する同値な表現へと簡単に変換する、というものが存在する。そのような変換のことを基底変換(きていへんかん、英: change of basis)と呼ぶ。 以下ではベクトル空間の語を用い、記号 R は実数の体を意味するために用いられるが、そこで議論される結果は R が可換環であり「ベクトル空間」が「自由R-加群に置き換えられた場合にも成立する。 (ja)
  • 線型代数学において、ある次元 n のベクトル空間に対する基底は、n 個のベクトル α1, ..., αn の列で、その空間内のすべてのベクトルがそれら基底ベクトルの線型結合として一意的に表現されるという性質が成り立つ。作用素の行列表示も、同様にその選ばれた基底によって一意的に決定される。しばしば一つのベクトル空間に対して、複数の基底について考えることが望ましいことがあり、したがって線型代数学における本質的に重要な概念として、ある一つの基底に対するベクトルと作用素の座標に関する表現を、他の基底に対する同値な表現へと簡単に変換する、というものが存在する。そのような変換のことを基底変換(きていへんかん、英: change of basis)と呼ぶ。 以下ではベクトル空間の語を用い、記号 R は実数の体を意味するために用いられるが、そこで議論される結果は R が可換環であり「ベクトル空間」が「自由R-加群に置き換えられた場合にも成立する。 (ja)
rdfs:label
  • 基底変換 (ja)
  • 基底変換 (ja)
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:wikiPageWikiLink of
is owl:sameAs of
is foaf:primaryTopic of