数学、特に代数学において、環 A が A-加群として半単純加群、すなわち、非自明な部分加群をもたない A-加群の直和であるとき、A を半単純環という。これは、同型の違いを除いて、(可換とは限らない)体上の全行列環の有限個の直積である。 この概念は数学の多くの分野において現れる。例えば、線型代数学、数論、、リー群論、リー環論が挙げられる。これは例えば、の証明に役立つ。 半単純多元環の理論はシューアの補題とアルティン・ウェダーバーンの定理を基盤としている。

Property Value
dbo:abstract
  • 数学、特に代数学において、環 A が A-加群として半単純加群、すなわち、非自明な部分加群をもたない A-加群の直和であるとき、A を半単純環という。これは、同型の違いを除いて、(可換とは限らない)体上の全行列環の有限個の直積である。 この概念は数学の多くの分野において現れる。例えば、線型代数学、数論、、リー群論、リー環論が挙げられる。これは例えば、の証明に役立つ。 半単純多元環の理論はシューアの補題とアルティン・ウェダーバーンの定理を基盤としている。 (ja)
  • 数学、特に代数学において、環 A が A-加群として半単純加群、すなわち、非自明な部分加群をもたない A-加群の直和であるとき、A を半単純環という。これは、同型の違いを除いて、(可換とは限らない)体上の全行列環の有限個の直積である。 この概念は数学の多くの分野において現れる。例えば、線型代数学、数論、、リー群論、リー環論が挙げられる。これは例えば、の証明に役立つ。 半単純多元環の理論はシューアの補題とアルティン・ウェダーバーンの定理を基盤としている。 (ja)
dbo:thumbnail
dbo:wikiPageID
  • 3061544 (xsd:integer)
dbo:wikiPageLength
  • 14771 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 86963879 (xsd:integer)
dbo:wikiPageWikiLink
prop-en:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • 数学、特に代数学において、環 A が A-加群として半単純加群、すなわち、非自明な部分加群をもたない A-加群の直和であるとき、A を半単純環という。これは、同型の違いを除いて、(可換とは限らない)体上の全行列環の有限個の直積である。 この概念は数学の多くの分野において現れる。例えば、線型代数学、数論、、リー群論、リー環論が挙げられる。これは例えば、の証明に役立つ。 半単純多元環の理論はシューアの補題とアルティン・ウェダーバーンの定理を基盤としている。 (ja)
  • 数学、特に代数学において、環 A が A-加群として半単純加群、すなわち、非自明な部分加群をもたない A-加群の直和であるとき、A を半単純環という。これは、同型の違いを除いて、(可換とは限らない)体上の全行列環の有限個の直積である。 この概念は数学の多くの分野において現れる。例えば、線型代数学、数論、、リー群論、リー環論が挙げられる。これは例えば、の証明に役立つ。 半単純多元環の理論はシューアの補題とアルティン・ウェダーバーンの定理を基盤としている。 (ja)
rdfs:label
  • 半単純環 (ja)
  • 半単純環 (ja)
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is owl:sameAs of
is foaf:primaryTopic of