Property |
Value |
dbo:abstract
|
- 数学において、シューアの補題(シューアのほだい、英: Schur's lemma)とは、群の表現や代数の表現に関する基本的できわめて有用な定理である。群の場合には、シューアの補題は M と N が群 G の有限次元既約表現加群であり、φ が群の作用と可換な M から N への線型写像とすると、φ は可逆であるか、または φ = 0 である、となる。重要な場合が、M = N で φ が自己準同型のときに起きる。シューアの補題は、イサイ・シューアの名前に因んでいる。彼はこの補題を使い、大直交性定理を証明し、有限群の表現論の基礎を確立した。シューアの補題は、リー群やリー代数へ一般化されており、多くの部分はによるものである。 代数 A 上の既約加群 M, N の間の A-準同型写像 ρ: M → N の場合、シューアの補題を一言でいうと、準同型写像 ρ は、同型か、または、零準同型であるとなる。特に、ρ ≠ 0 かつ k が代数的閉体で既約加群 M と N が k 上有限次元であれば、M から N への A-準同型写像は ρ のスカラー倍に限ること意味する。 (ja)
- 数学において、シューアの補題(シューアのほだい、英: Schur's lemma)とは、群の表現や代数の表現に関する基本的できわめて有用な定理である。群の場合には、シューアの補題は M と N が群 G の有限次元既約表現加群であり、φ が群の作用と可換な M から N への線型写像とすると、φ は可逆であるか、または φ = 0 である、となる。重要な場合が、M = N で φ が自己準同型のときに起きる。シューアの補題は、イサイ・シューアの名前に因んでいる。彼はこの補題を使い、大直交性定理を証明し、有限群の表現論の基礎を確立した。シューアの補題は、リー群やリー代数へ一般化されており、多くの部分はによるものである。 代数 A 上の既約加群 M, N の間の A-準同型写像 ρ: M → N の場合、シューアの補題を一言でいうと、準同型写像 ρ は、同型か、または、零準同型であるとなる。特に、ρ ≠ 0 かつ k が代数的閉体で既約加群 M と N が k 上有限次元であれば、M から N への A-準同型写像は ρ のスカラー倍に限ること意味する。 (ja)
|
dbo:wikiPageExternalLink
| |
dbo:wikiPageID
| |
dbo:wikiPageLength
|
- 16512 (xsd:nonNegativeInteger)
|
dbo:wikiPageRevisionID
| |
dbo:wikiPageWikiLink
| |
prop-en:wikiPageUsesTemplate
| |
dct:subject
| |
rdfs:comment
|
- 数学において、シューアの補題(シューアのほだい、英: Schur's lemma)とは、群の表現や代数の表現に関する基本的できわめて有用な定理である。群の場合には、シューアの補題は M と N が群 G の有限次元既約表現加群であり、φ が群の作用と可換な M から N への線型写像とすると、φ は可逆であるか、または φ = 0 である、となる。重要な場合が、M = N で φ が自己準同型のときに起きる。シューアの補題は、イサイ・シューアの名前に因んでいる。彼はこの補題を使い、大直交性定理を証明し、有限群の表現論の基礎を確立した。シューアの補題は、リー群やリー代数へ一般化されており、多くの部分はによるものである。 代数 A 上の既約加群 M, N の間の A-準同型写像 ρ: M → N の場合、シューアの補題を一言でいうと、準同型写像 ρ は、同型か、または、零準同型であるとなる。特に、ρ ≠ 0 かつ k が代数的閉体で既約加群 M と N が k 上有限次元であれば、M から N への A-準同型写像は ρ のスカラー倍に限ること意味する。 (ja)
- 数学において、シューアの補題(シューアのほだい、英: Schur's lemma)とは、群の表現や代数の表現に関する基本的できわめて有用な定理である。群の場合には、シューアの補題は M と N が群 G の有限次元既約表現加群であり、φ が群の作用と可換な M から N への線型写像とすると、φ は可逆であるか、または φ = 0 である、となる。重要な場合が、M = N で φ が自己準同型のときに起きる。シューアの補題は、イサイ・シューアの名前に因んでいる。彼はこの補題を使い、大直交性定理を証明し、有限群の表現論の基礎を確立した。シューアの補題は、リー群やリー代数へ一般化されており、多くの部分はによるものである。 代数 A 上の既約加群 M, N の間の A-準同型写像 ρ: M → N の場合、シューアの補題を一言でいうと、準同型写像 ρ は、同型か、または、零準同型であるとなる。特に、ρ ≠ 0 かつ k が代数的閉体で既約加群 M と N が k 上有限次元であれば、M から N への A-準同型写像は ρ のスカラー倍に限ること意味する。 (ja)
|
rdfs:label
|
- シューアの補題 (ja)
- シューアの補題 (ja)
|
owl:sameAs
| |
prov:wasDerivedFrom
| |
foaf:isPrimaryTopicOf
| |
is dbo:wikiPageWikiLink
of | |
is owl:sameAs
of | |
is foaf:primaryTopic
of | |