環論および加群論という抽象代数学の分野において、各右(resp. 左)R 加群 M は零化イデアルが R の本質右(resp. 左)イデアルであるような元からなる特異部分加群 (singular submodule) をもつ。集合の表記ではそれは通常 と表記される。一般の環に対して、 は域に対して最もしばしば定義される捩れ部分加群 t(M) の良い一般化である。R が可換域の場合には、 である。 R が任意の環であれば、 は R を右加群と考えて定義され、この場合 は R の右特異イデアル (right singular ideal) と呼ばれる R の両側イデアルである。同様に左側の類似物 が定義される。 であることがある。 この記事は特異部分加群と特異イデアルの点から、特異加群 (singular module)、非特異加群 (nonsingular module)、そして右と左非特異環 (nonsingular ring) の定義を含むいくつかの概念を展開する。

Property Value
dbo:abstract
  • 環論および加群論という抽象代数学の分野において、各右(resp. 左)R 加群 M は零化イデアルが R の本質右(resp. 左)イデアルであるような元からなる特異部分加群 (singular submodule) をもつ。集合の表記ではそれは通常 と表記される。一般の環に対して、 は域に対して最もしばしば定義される捩れ部分加群 t(M) の良い一般化である。R が可換域の場合には、 である。 R が任意の環であれば、 は R を右加群と考えて定義され、この場合 は R の右特異イデアル (right singular ideal) と呼ばれる R の両側イデアルである。同様に左側の類似物 が定義される。 であることがある。 この記事は特異部分加群と特異イデアルの点から、特異加群 (singular module)、非特異加群 (nonsingular module)、そして右と左非特異環 (nonsingular ring) の定義を含むいくつかの概念を展開する。 (ja)
  • 環論および加群論という抽象代数学の分野において、各右(resp. 左)R 加群 M は零化イデアルが R の本質右(resp. 左)イデアルであるような元からなる特異部分加群 (singular submodule) をもつ。集合の表記ではそれは通常 と表記される。一般の環に対して、 は域に対して最もしばしば定義される捩れ部分加群 t(M) の良い一般化である。R が可換域の場合には、 である。 R が任意の環であれば、 は R を右加群と考えて定義され、この場合 は R の右特異イデアル (right singular ideal) と呼ばれる R の両側イデアルである。同様に左側の類似物 が定義される。 であることがある。 この記事は特異部分加群と特異イデアルの点から、特異加群 (singular module)、非特異加群 (nonsingular module)、そして右と左非特異環 (nonsingular ring) の定義を含むいくつかの概念を展開する。 (ja)
dbo:wikiPageID
  • 3100089 (xsd:integer)
dbo:wikiPageLength
  • 4158 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 55149650 (xsd:integer)
dbo:wikiPageWikiLink
prop-en:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • 環論および加群論という抽象代数学の分野において、各右(resp. 左)R 加群 M は零化イデアルが R の本質右(resp. 左)イデアルであるような元からなる特異部分加群 (singular submodule) をもつ。集合の表記ではそれは通常 と表記される。一般の環に対して、 は域に対して最もしばしば定義される捩れ部分加群 t(M) の良い一般化である。R が可換域の場合には、 である。 R が任意の環であれば、 は R を右加群と考えて定義され、この場合 は R の右特異イデアル (right singular ideal) と呼ばれる R の両側イデアルである。同様に左側の類似物 が定義される。 であることがある。 この記事は特異部分加群と特異イデアルの点から、特異加群 (singular module)、非特異加群 (nonsingular module)、そして右と左非特異環 (nonsingular ring) の定義を含むいくつかの概念を展開する。 (ja)
  • 環論および加群論という抽象代数学の分野において、各右(resp. 左)R 加群 M は零化イデアルが R の本質右(resp. 左)イデアルであるような元からなる特異部分加群 (singular submodule) をもつ。集合の表記ではそれは通常 と表記される。一般の環に対して、 は域に対して最もしばしば定義される捩れ部分加群 t(M) の良い一般化である。R が可換域の場合には、 である。 R が任意の環であれば、 は R を右加群と考えて定義され、この場合 は R の右特異イデアル (right singular ideal) と呼ばれる R の両側イデアルである。同様に左側の類似物 が定義される。 であることがある。 この記事は特異部分加群と特異イデアルの点から、特異加群 (singular module)、非特異加群 (nonsingular module)、そして右と左非特異環 (nonsingular ring) の定義を含むいくつかの概念を展開する。 (ja)
rdfs:label
  • 特異部分加群 (ja)
  • 特異部分加群 (ja)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is owl:sameAs of
is foaf:primaryTopic of