可換環論において、正則局所環(せいそくきょくしょかん、英: regular local ring)とは、ネーター局所環 であって、剰余体 について を満たすような環である。ただし左辺は A のクルル次元、右辺は k ベクトル空間としての次元である。右辺の数はしばしば埋め込み次元(英: embedding dimension)と呼ばれ と書かれることもある。 正則局所環は代数幾何学において代数多様体の非特異点に対応するため中心的な役割を占める。 ネーター局所環については次の包含関係が成り立つ。 強鎖状環 ⊃ コーエン・マコーレー環 ⊃ ゴレンシュタイン環 ⊃ 完全交叉環 ⊃ 正則局所環

Property Value
dbo:abstract
  • 可換環論において、正則局所環(せいそくきょくしょかん、英: regular local ring)とは、ネーター局所環 であって、剰余体 について を満たすような環である。ただし左辺は A のクルル次元、右辺は k ベクトル空間としての次元である。右辺の数はしばしば埋め込み次元(英: embedding dimension)と呼ばれ と書かれることもある。 正則局所環は代数幾何学において代数多様体の非特異点に対応するため中心的な役割を占める。 ネーター局所環については次の包含関係が成り立つ。 強鎖状環 ⊃ コーエン・マコーレー環 ⊃ ゴレンシュタイン環 ⊃ 完全交叉環 ⊃ 正則局所環 (ja)
  • 可換環論において、正則局所環(せいそくきょくしょかん、英: regular local ring)とは、ネーター局所環 であって、剰余体 について を満たすような環である。ただし左辺は A のクルル次元、右辺は k ベクトル空間としての次元である。右辺の数はしばしば埋め込み次元(英: embedding dimension)と呼ばれ と書かれることもある。 正則局所環は代数幾何学において代数多様体の非特異点に対応するため中心的な役割を占める。 ネーター局所環については次の包含関係が成り立つ。 強鎖状環 ⊃ コーエン・マコーレー環 ⊃ ゴレンシュタイン環 ⊃ 完全交叉環 ⊃ 正則局所環 (ja)
dbo:wikiPageID
  • 3063722 (xsd:integer)
dbo:wikiPageLength
  • 3497 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 86957573 (xsd:integer)
dbo:wikiPageWikiLink
prop-ja:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • 可換環論において、正則局所環(せいそくきょくしょかん、英: regular local ring)とは、ネーター局所環 であって、剰余体 について を満たすような環である。ただし左辺は A のクルル次元、右辺は k ベクトル空間としての次元である。右辺の数はしばしば埋め込み次元(英: embedding dimension)と呼ばれ と書かれることもある。 正則局所環は代数幾何学において代数多様体の非特異点に対応するため中心的な役割を占める。 ネーター局所環については次の包含関係が成り立つ。 強鎖状環 ⊃ コーエン・マコーレー環 ⊃ ゴレンシュタイン環 ⊃ 完全交叉環 ⊃ 正則局所環 (ja)
  • 可換環論において、正則局所環(せいそくきょくしょかん、英: regular local ring)とは、ネーター局所環 であって、剰余体 について を満たすような環である。ただし左辺は A のクルル次元、右辺は k ベクトル空間としての次元である。右辺の数はしばしば埋め込み次元(英: embedding dimension)と呼ばれ と書かれることもある。 正則局所環は代数幾何学において代数多様体の非特異点に対応するため中心的な役割を占める。 ネーター局所環については次の包含関係が成り立つ。 強鎖状環 ⊃ コーエン・マコーレー環 ⊃ ゴレンシュタイン環 ⊃ 完全交叉環 ⊃ 正則局所環 (ja)
rdfs:label
  • 正則局所環 (ja)
  • 正則局所環 (ja)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is owl:sameAs of
is foaf:primaryTopic of