楕円曲線暗号(だえんきょくせんあんごう、Elliptic Curve Cryptography、ECC)とは、楕円曲線上の離散対数問題 (EC-DLP) の困難性を安全性の根拠とする暗号。1985年頃に (Victor S. Miller) と (Neal Koblitz) が各々発明した。 具体的な暗号方式の名前ではなく、楕円曲線を利用した暗号方式の総称である。DSAを楕円曲線上で定義した楕円曲線DSA (ECDSA)、ディフィー・ヘルマン鍵共有(DH鍵共有)を楕円化した楕円曲線ディフィー・ヘルマン鍵共有 (ECDH) などがある。公開鍵暗号が多い。 EC-DLPを解くアルゴリズムがまだ見つかっていないため、それが見つかるまでの間は、RSA暗号などと比べて、同レベルの安全性をより短い鍵で実現でき、処理速度も速いことをメリットとして、ポストRSA暗号として注目されている。ただしP=NPが成立した場合、EC-DLPを多項式時間で解くアルゴリズムが存在するということになり、ECCの安全性は崩壊する(公開鍵暗号自体が崩壊)。また、が暗号化時に適当な乱数(公開鍵とは違うモノ)を使うので鍵が同じでも平文と暗号文の関係が1対1でない点にも注意(ElGamal暗号でも同様)。 一部の楕円曲線には、DLPを解く多項式時間アルゴリズムが見つかっているため、注意が必要である。

Property Value
dbo:abstract
  • 楕円曲線暗号(だえんきょくせんあんごう、Elliptic Curve Cryptography、ECC)とは、楕円曲線上の離散対数問題 (EC-DLP) の困難性を安全性の根拠とする暗号。1985年頃に (Victor S. Miller) と (Neal Koblitz) が各々発明した。 具体的な暗号方式の名前ではなく、楕円曲線を利用した暗号方式の総称である。DSAを楕円曲線上で定義した楕円曲線DSA (ECDSA)、ディフィー・ヘルマン鍵共有(DH鍵共有)を楕円化した楕円曲線ディフィー・ヘルマン鍵共有 (ECDH) などがある。公開鍵暗号が多い。 EC-DLPを解くアルゴリズムがまだ見つかっていないため、それが見つかるまでの間は、RSA暗号などと比べて、同レベルの安全性をより短い鍵で実現でき、処理速度も速いことをメリットとして、ポストRSA暗号として注目されている。ただしP=NPが成立した場合、EC-DLPを多項式時間で解くアルゴリズムが存在するということになり、ECCの安全性は崩壊する(公開鍵暗号自体が崩壊)。また、が暗号化時に適当な乱数(公開鍵とは違うモノ)を使うので鍵が同じでも平文と暗号文の関係が1対1でない点にも注意(ElGamal暗号でも同様)。 一部の楕円曲線には、DLPを解く多項式時間アルゴリズムが見つかっているため、注意が必要である。 (ja)
  • 楕円曲線暗号(だえんきょくせんあんごう、Elliptic Curve Cryptography、ECC)とは、楕円曲線上の離散対数問題 (EC-DLP) の困難性を安全性の根拠とする暗号。1985年頃に (Victor S. Miller) と (Neal Koblitz) が各々発明した。 具体的な暗号方式の名前ではなく、楕円曲線を利用した暗号方式の総称である。DSAを楕円曲線上で定義した楕円曲線DSA (ECDSA)、ディフィー・ヘルマン鍵共有(DH鍵共有)を楕円化した楕円曲線ディフィー・ヘルマン鍵共有 (ECDH) などがある。公開鍵暗号が多い。 EC-DLPを解くアルゴリズムがまだ見つかっていないため、それが見つかるまでの間は、RSA暗号などと比べて、同レベルの安全性をより短い鍵で実現でき、処理速度も速いことをメリットとして、ポストRSA暗号として注目されている。ただしP=NPが成立した場合、EC-DLPを多項式時間で解くアルゴリズムが存在するということになり、ECCの安全性は崩壊する(公開鍵暗号自体が崩壊)。また、が暗号化時に適当な乱数(公開鍵とは違うモノ)を使うので鍵が同じでも平文と暗号文の関係が1対1でない点にも注意(ElGamal暗号でも同様)。 一部の楕円曲線には、DLPを解く多項式時間アルゴリズムが見つかっているため、注意が必要である。 (ja)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 14838 (xsd:integer)
dbo:wikiPageLength
  • 9053 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 92147613 (xsd:integer)
dbo:wikiPageWikiLink
prop-ja:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • 楕円曲線暗号(だえんきょくせんあんごう、Elliptic Curve Cryptography、ECC)とは、楕円曲線上の離散対数問題 (EC-DLP) の困難性を安全性の根拠とする暗号。1985年頃に (Victor S. Miller) と (Neal Koblitz) が各々発明した。 具体的な暗号方式の名前ではなく、楕円曲線を利用した暗号方式の総称である。DSAを楕円曲線上で定義した楕円曲線DSA (ECDSA)、ディフィー・ヘルマン鍵共有(DH鍵共有)を楕円化した楕円曲線ディフィー・ヘルマン鍵共有 (ECDH) などがある。公開鍵暗号が多い。 EC-DLPを解くアルゴリズムがまだ見つかっていないため、それが見つかるまでの間は、RSA暗号などと比べて、同レベルの安全性をより短い鍵で実現でき、処理速度も速いことをメリットとして、ポストRSA暗号として注目されている。ただしP=NPが成立した場合、EC-DLPを多項式時間で解くアルゴリズムが存在するということになり、ECCの安全性は崩壊する(公開鍵暗号自体が崩壊)。また、が暗号化時に適当な乱数(公開鍵とは違うモノ)を使うので鍵が同じでも平文と暗号文の関係が1対1でない点にも注意(ElGamal暗号でも同様)。 一部の楕円曲線には、DLPを解く多項式時間アルゴリズムが見つかっているため、注意が必要である。 (ja)
  • 楕円曲線暗号(だえんきょくせんあんごう、Elliptic Curve Cryptography、ECC)とは、楕円曲線上の離散対数問題 (EC-DLP) の困難性を安全性の根拠とする暗号。1985年頃に (Victor S. Miller) と (Neal Koblitz) が各々発明した。 具体的な暗号方式の名前ではなく、楕円曲線を利用した暗号方式の総称である。DSAを楕円曲線上で定義した楕円曲線DSA (ECDSA)、ディフィー・ヘルマン鍵共有(DH鍵共有)を楕円化した楕円曲線ディフィー・ヘルマン鍵共有 (ECDH) などがある。公開鍵暗号が多い。 EC-DLPを解くアルゴリズムがまだ見つかっていないため、それが見つかるまでの間は、RSA暗号などと比べて、同レベルの安全性をより短い鍵で実現でき、処理速度も速いことをメリットとして、ポストRSA暗号として注目されている。ただしP=NPが成立した場合、EC-DLPを多項式時間で解くアルゴリズムが存在するということになり、ECCの安全性は崩壊する(公開鍵暗号自体が崩壊)。また、が暗号化時に適当な乱数(公開鍵とは違うモノ)を使うので鍵が同じでも平文と暗号文の関係が1対1でない点にも注意(ElGamal暗号でも同様)。 一部の楕円曲線には、DLPを解く多項式時間アルゴリズムが見つかっているため、注意が必要である。 (ja)
rdfs:label
  • 楕円曲線暗号 (ja)
  • 楕円曲線暗号 (ja)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is prop-ja:structure of
is owl:sameAs of
is foaf:primaryTopic of