数学における楕円曲線(だえんきょくせん、英: elliptic curve)とは種数 1 の非特異な射影代数曲線、さらに一般的には、特定の基点 O を持つ種数 1 の代数曲線を言う。 楕円曲線上の点に対し、先述の点 O を単位元とする(必ず可換な)群をなすように、和を代数的に定義することができる。すなわち楕円曲線はアーベル多様体である。 楕円曲線は、代数幾何学的には、射影平面 P2 の中の三次の平面代数曲線として見ることもできる。より正確には、射影平面上、楕円曲線はヴァイエルシュトラス方程式あるいはヴァイエルシュトラスの標準形 により定義された非特異な平面代数曲線に双有理同値である(有理変換によってそのような曲線に変換される)。そしてこの形にあらわされているとき、O は実は射影平面の「無限遠点」である。 また、の標数が 2 でも 3 でもないとき、楕円曲線は、上次の形の式により定義された非特異な平面代数曲線に双有理同値である。 非特異であるとは、グラフが尖点を持ったり、自分自身と交叉したりはしないということである。この形の方程式もヴァイエルシュトラス方程式あるいはヴァイエルシュトラスの標準形という。係数体の標数が 2 や 3 のとき、上の式は全ての非特異を表せるほど一般ではない(詳細な定義はを参照)。 このように、楕円曲線は次のように見なすことができる。

Property Value
dbo:abstract
  • 数学における楕円曲線(だえんきょくせん、英: elliptic curve)とは種数 1 の非特異な射影代数曲線、さらに一般的には、特定の基点 O を持つ種数 1 の代数曲線を言う。 楕円曲線上の点に対し、先述の点 O を単位元とする(必ず可換な)群をなすように、和を代数的に定義することができる。すなわち楕円曲線はアーベル多様体である。 楕円曲線は、代数幾何学的には、射影平面 P2 の中の三次の平面代数曲線として見ることもできる。より正確には、射影平面上、楕円曲線はヴァイエルシュトラス方程式あるいはヴァイエルシュトラスの標準形 により定義された非特異な平面代数曲線に双有理同値である(有理変換によってそのような曲線に変換される)。そしてこの形にあらわされているとき、O は実は射影平面の「無限遠点」である。 また、の標数が 2 でも 3 でもないとき、楕円曲線は、上次の形の式により定義された非特異な平面代数曲線に双有理同値である。 非特異であるとは、グラフが尖点を持ったり、自分自身と交叉したりはしないということである。この形の方程式もヴァイエルシュトラス方程式あるいはヴァイエルシュトラスの標準形という。係数体の標数が 2 や 3 のとき、上の式は全ての非特異を表せるほど一般ではない(詳細な定義はを参照)。 Pが重根を持たない三次多項式として、y2 = P(x) とすると、種数 1 の非特異平面曲線を得るので、これは楕円曲線である。Pが次数 4 でとすると、これも種数 1 の平面曲線となるが、しかし、単位元を自然に選び出すことができない。さらに一般的には、単位元として働く有理点を少なくとも一つ持つような種数 1 の代数曲線を楕円曲線と呼ぶ。例えば、三次元射影空間へ埋め込まれた二つの二次曲面の交叉は楕円曲線である。 楕円関数論を使い、複素数上で定義された楕円曲線はトーラスのへの埋め込みに対応することを示すことができる。トーラスもアーベル群で、実はこの対応は群同型かつ位相的に同相にもなっている。したがって、位相的には複素楕円曲線はトーラスである。 楕円曲線は、数論で特に重要で、現在研究されている主要な分野の一つである。例えば、アンドリュー・ワイルズにより(リチャード・テイラーの支援を得て)証明されたフェルマーの最終定理で重要な役割を持っている(を参照)。また、楕円曲線は、楕円暗号(ECC) や素因数分解への応用が見つかっている。 楕円曲線は、楕円ではないことに注意すべきである。「楕円」ということばの由来については楕円積分、楕円関数を参照。 このように、楕円曲線は次のように見なすことができる。 1. * 一次元のアーベル多様体 2. * 三次の平面代数曲線で、有理点を持つもの 3. * 複素数を加法群とみて、二重周期を持つ格子で割った商空間(複素数体上のみ、) (ja)
  • 数学における楕円曲線(だえんきょくせん、英: elliptic curve)とは種数 1 の非特異な射影代数曲線、さらに一般的には、特定の基点 O を持つ種数 1 の代数曲線を言う。 楕円曲線上の点に対し、先述の点 O を単位元とする(必ず可換な)群をなすように、和を代数的に定義することができる。すなわち楕円曲線はアーベル多様体である。 楕円曲線は、代数幾何学的には、射影平面 P2 の中の三次の平面代数曲線として見ることもできる。より正確には、射影平面上、楕円曲線はヴァイエルシュトラス方程式あるいはヴァイエルシュトラスの標準形 により定義された非特異な平面代数曲線に双有理同値である(有理変換によってそのような曲線に変換される)。そしてこの形にあらわされているとき、O は実は射影平面の「無限遠点」である。 また、の標数が 2 でも 3 でもないとき、楕円曲線は、上次の形の式により定義された非特異な平面代数曲線に双有理同値である。 非特異であるとは、グラフが尖点を持ったり、自分自身と交叉したりはしないということである。この形の方程式もヴァイエルシュトラス方程式あるいはヴァイエルシュトラスの標準形という。係数体の標数が 2 や 3 のとき、上の式は全ての非特異を表せるほど一般ではない(詳細な定義はを参照)。 Pが重根を持たない三次多項式として、y2 = P(x) とすると、種数 1 の非特異平面曲線を得るので、これは楕円曲線である。Pが次数 4 でとすると、これも種数 1 の平面曲線となるが、しかし、単位元を自然に選び出すことができない。さらに一般的には、単位元として働く有理点を少なくとも一つ持つような種数 1 の代数曲線を楕円曲線と呼ぶ。例えば、三次元射影空間へ埋め込まれた二つの二次曲面の交叉は楕円曲線である。 楕円関数論を使い、複素数上で定義された楕円曲線はトーラスのへの埋め込みに対応することを示すことができる。トーラスもアーベル群で、実はこの対応は群同型かつ位相的に同相にもなっている。したがって、位相的には複素楕円曲線はトーラスである。 楕円曲線は、数論で特に重要で、現在研究されている主要な分野の一つである。例えば、アンドリュー・ワイルズにより(リチャード・テイラーの支援を得て)証明されたフェルマーの最終定理で重要な役割を持っている(を参照)。また、楕円曲線は、楕円暗号(ECC) や素因数分解への応用が見つかっている。 楕円曲線は、楕円ではないことに注意すべきである。「楕円」ということばの由来については楕円積分、楕円関数を参照。 このように、楕円曲線は次のように見なすことができる。 1. * 一次元のアーベル多様体 2. * 三次の平面代数曲線で、有理点を持つもの 3. * 複素数を加法群とみて、二重周期を持つ格子で割った商空間(複素数体上のみ、) (ja)
dbo:thumbnail
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 56548 (xsd:integer)
dbo:wikiPageLength
  • 43767 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 90781556 (xsd:integer)
dbo:wikiPageWikiLink
prop-ja:title
  • Elliptic Curves (ja)
  • Elliptic curve (ja)
  • Elliptic Curves (ja)
  • Elliptic curve (ja)
prop-ja:urlname
  • EllipticCurve (ja)
  • Elliptic_curve (ja)
  • EllipticCurve (ja)
  • Elliptic_curve (ja)
prop-ja:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • 数学における楕円曲線(だえんきょくせん、英: elliptic curve)とは種数 1 の非特異な射影代数曲線、さらに一般的には、特定の基点 O を持つ種数 1 の代数曲線を言う。 楕円曲線上の点に対し、先述の点 O を単位元とする(必ず可換な)群をなすように、和を代数的に定義することができる。すなわち楕円曲線はアーベル多様体である。 楕円曲線は、代数幾何学的には、射影平面 P2 の中の三次の平面代数曲線として見ることもできる。より正確には、射影平面上、楕円曲線はヴァイエルシュトラス方程式あるいはヴァイエルシュトラスの標準形 により定義された非特異な平面代数曲線に双有理同値である(有理変換によってそのような曲線に変換される)。そしてこの形にあらわされているとき、O は実は射影平面の「無限遠点」である。 また、の標数が 2 でも 3 でもないとき、楕円曲線は、上次の形の式により定義された非特異な平面代数曲線に双有理同値である。 非特異であるとは、グラフが尖点を持ったり、自分自身と交叉したりはしないということである。この形の方程式もヴァイエルシュトラス方程式あるいはヴァイエルシュトラスの標準形という。係数体の標数が 2 や 3 のとき、上の式は全ての非特異を表せるほど一般ではない(詳細な定義はを参照)。 このように、楕円曲線は次のように見なすことができる。 (ja)
  • 数学における楕円曲線(だえんきょくせん、英: elliptic curve)とは種数 1 の非特異な射影代数曲線、さらに一般的には、特定の基点 O を持つ種数 1 の代数曲線を言う。 楕円曲線上の点に対し、先述の点 O を単位元とする(必ず可換な)群をなすように、和を代数的に定義することができる。すなわち楕円曲線はアーベル多様体である。 楕円曲線は、代数幾何学的には、射影平面 P2 の中の三次の平面代数曲線として見ることもできる。より正確には、射影平面上、楕円曲線はヴァイエルシュトラス方程式あるいはヴァイエルシュトラスの標準形 により定義された非特異な平面代数曲線に双有理同値である(有理変換によってそのような曲線に変換される)。そしてこの形にあらわされているとき、O は実は射影平面の「無限遠点」である。 また、の標数が 2 でも 3 でもないとき、楕円曲線は、上次の形の式により定義された非特異な平面代数曲線に双有理同値である。 非特異であるとは、グラフが尖点を持ったり、自分自身と交叉したりはしないということである。この形の方程式もヴァイエルシュトラス方程式あるいはヴァイエルシュトラスの標準形という。係数体の標数が 2 や 3 のとき、上の式は全ての非特異を表せるほど一般ではない(詳細な定義はを参照)。 このように、楕円曲線は次のように見なすことができる。 (ja)
rdfs:label
  • 楕円曲線 (ja)
  • 楕円曲線 (ja)
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:wikiPageWikiLink of
is owl:sameAs of
is foaf:primaryTopic of