数学の分野である体論において、最小多項式(さいしょうたこうしき、英: minimal polynomial)は体の拡大 E/F と拡大体 E の元に対して定義される。元の最小多項式は、存在すれば、x を変数とする F 上の多項式環 F[x] の元である。E の元 α が与えられたとき、Jα を f(α) = 0 なる F[x] のすべての多項式 f(x) の集合とする。元 α は Jα の各多項式の根あるいは零点と呼ばれる。集合 Jα は F[x] のイデアルであるからそのように名づけられている。すべての係数が 0 である零多項式は、すべての α と i に対し 0αi = 0 であるから、すべての Jα に属している。そのため零多項式は異なる値の α を分類するには役に立たないから、除外される。Jα に零でない多項式が存在すれば、α は F 上代数的な元と呼ばれ、Jα の中に最小次数のモニック多項式が存在する。これが E/F に関しての α の最小多項式である。これは一意的で、F 上既約である。零多項式が Jα の唯一の元であれば、α は F 上超越的な元と呼ばれ、E/F に関して最小多項式は存在しない。

Property Value
dbo:abstract
  • 数学の分野である体論において、最小多項式(さいしょうたこうしき、英: minimal polynomial)は体の拡大 E/F と拡大体 E の元に対して定義される。元の最小多項式は、存在すれば、x を変数とする F 上の多項式環 F[x] の元である。E の元 α が与えられたとき、Jα を f(α) = 0 なる F[x] のすべての多項式 f(x) の集合とする。元 α は Jα の各多項式の根あるいは零点と呼ばれる。集合 Jα は F[x] のイデアルであるからそのように名づけられている。すべての係数が 0 である零多項式は、すべての α と i に対し 0αi = 0 であるから、すべての Jα に属している。そのため零多項式は異なる値の α を分類するには役に立たないから、除外される。Jα に零でない多項式が存在すれば、α は F 上代数的な元と呼ばれ、Jα の中に最小次数のモニック多項式が存在する。これが E/F に関しての α の最小多項式である。これは一意的で、F 上既約である。零多項式が Jα の唯一の元であれば、α は F 上超越的な元と呼ばれ、E/F に関して最小多項式は存在しない。 最小多項式は体の拡大を構成したり解析したりするときに有用である。α が代数的で最小多項式が a(x) のとき、F と α をともに含む最小の体は商環 F[x]/⟨a(x)⟩ に同型である。ここで ⟨a(x)⟩ は a(x) によって生成された F[x] のイデアルである。最小多項式はを定義するためにも使われる。 (ja)
  • 数学の分野である体論において、最小多項式(さいしょうたこうしき、英: minimal polynomial)は体の拡大 E/F と拡大体 E の元に対して定義される。元の最小多項式は、存在すれば、x を変数とする F 上の多項式環 F[x] の元である。E の元 α が与えられたとき、Jα を f(α) = 0 なる F[x] のすべての多項式 f(x) の集合とする。元 α は Jα の各多項式の根あるいは零点と呼ばれる。集合 Jα は F[x] のイデアルであるからそのように名づけられている。すべての係数が 0 である零多項式は、すべての α と i に対し 0αi = 0 であるから、すべての Jα に属している。そのため零多項式は異なる値の α を分類するには役に立たないから、除外される。Jα に零でない多項式が存在すれば、α は F 上代数的な元と呼ばれ、Jα の中に最小次数のモニック多項式が存在する。これが E/F に関しての α の最小多項式である。これは一意的で、F 上既約である。零多項式が Jα の唯一の元であれば、α は F 上超越的な元と呼ばれ、E/F に関して最小多項式は存在しない。 最小多項式は体の拡大を構成したり解析したりするときに有用である。α が代数的で最小多項式が a(x) のとき、F と α をともに含む最小の体は商環 F[x]/⟨a(x)⟩ に同型である。ここで ⟨a(x)⟩ は a(x) によって生成された F[x] のイデアルである。最小多項式はを定義するためにも使われる。 (ja)
dbo:wikiPageID
  • 3136953 (xsd:integer)
dbo:wikiPageLength
  • 4398 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 77309413 (xsd:integer)
dbo:wikiPageWikiLink
prop-en:title
  • Algebraic Number Minimal Polynomial (ja)
  • Minimal polynomial (ja)
  • Algebraic Number Minimal Polynomial (ja)
  • Minimal polynomial (ja)
prop-en:urlname
  • AlgebraicNumberMinimalPolynomial (ja)
  • MinimalPolynomial (ja)
  • AlgebraicNumberMinimalPolynomial (ja)
  • MinimalPolynomial (ja)
prop-en:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • 数学の分野である体論において、最小多項式(さいしょうたこうしき、英: minimal polynomial)は体の拡大 E/F と拡大体 E の元に対して定義される。元の最小多項式は、存在すれば、x を変数とする F 上の多項式環 F[x] の元である。E の元 α が与えられたとき、Jα を f(α) = 0 なる F[x] のすべての多項式 f(x) の集合とする。元 α は Jα の各多項式の根あるいは零点と呼ばれる。集合 Jα は F[x] のイデアルであるからそのように名づけられている。すべての係数が 0 である零多項式は、すべての α と i に対し 0αi = 0 であるから、すべての Jα に属している。そのため零多項式は異なる値の α を分類するには役に立たないから、除外される。Jα に零でない多項式が存在すれば、α は F 上代数的な元と呼ばれ、Jα の中に最小次数のモニック多項式が存在する。これが E/F に関しての α の最小多項式である。これは一意的で、F 上既約である。零多項式が Jα の唯一の元であれば、α は F 上超越的な元と呼ばれ、E/F に関して最小多項式は存在しない。 (ja)
  • 数学の分野である体論において、最小多項式(さいしょうたこうしき、英: minimal polynomial)は体の拡大 E/F と拡大体 E の元に対して定義される。元の最小多項式は、存在すれば、x を変数とする F 上の多項式環 F[x] の元である。E の元 α が与えられたとき、Jα を f(α) = 0 なる F[x] のすべての多項式 f(x) の集合とする。元 α は Jα の各多項式の根あるいは零点と呼ばれる。集合 Jα は F[x] のイデアルであるからそのように名づけられている。すべての係数が 0 である零多項式は、すべての α と i に対し 0αi = 0 であるから、すべての Jα に属している。そのため零多項式は異なる値の α を分類するには役に立たないから、除外される。Jα に零でない多項式が存在すれば、α は F 上代数的な元と呼ばれ、Jα の中に最小次数のモニック多項式が存在する。これが E/F に関しての α の最小多項式である。これは一意的で、F 上既約である。零多項式が Jα の唯一の元であれば、α は F 上超越的な元と呼ばれ、E/F に関して最小多項式は存在しない。 (ja)
rdfs:label
  • 最小多項式 (体論) (ja)
  • 最小多項式 (体論) (ja)
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageWikiLink of
is owl:sameAs of
is foaf:primaryTopic of