ベズーの等式(ベズーのとうしき、英: Bézout's identity)は初等整数論における定理である。ベズーの補題(ベズーのほだい、英: Bézout's lemma)とも呼ばれる。 ベズーの等式 ― a と b を 0 でない整数とし、d をそれらの最大公約数とする。このとき整数 x と y が存在して ax + by = d となる。さらに、 1. * d は ax + by と書ける最小の正の整数であり、 2. * ax + by の形のすべての整数は d の倍数である。 x と y は (a, b) のベズー係数 (Bézout coefficients) と呼ばれる。それらは一意的ではない。ベズー係数の組は拡張ユークリッドの互除法によって計算できる。a と b がどちらも 0 でなければ、拡張ユークリッドの互除法から かつ であるような 2 つの組の一方が出る。 ベズーの補題は任意の主イデアル整域において正しいが、正しくないような整域が存在する。

Property Value
dbo:abstract
  • ベズーの等式(ベズーのとうしき、英: Bézout's identity)は初等整数論における定理である。ベズーの補題(ベズーのほだい、英: Bézout's lemma)とも呼ばれる。 ベズーの等式 ― a と b を 0 でない整数とし、d をそれらの最大公約数とする。このとき整数 x と y が存在して ax + by = d となる。さらに、 1. * d は ax + by と書ける最小の正の整数であり、 2. * ax + by の形のすべての整数は d の倍数である。 x と y は (a, b) のベズー係数 (Bézout coefficients) と呼ばれる。それらは一意的ではない。ベズー係数の組は拡張ユークリッドの互除法によって計算できる。a と b がどちらも 0 でなければ、拡張ユークリッドの互除法から かつ であるような 2 つの組の一方が出る。 ベズーの補題は任意の主イデアル整域において正しいが、正しくないような整域が存在する。 (ja)
  • ベズーの等式(ベズーのとうしき、英: Bézout's identity)は初等整数論における定理である。ベズーの補題(ベズーのほだい、英: Bézout's lemma)とも呼ばれる。 ベズーの等式 ― a と b を 0 でない整数とし、d をそれらの最大公約数とする。このとき整数 x と y が存在して ax + by = d となる。さらに、 1. * d は ax + by と書ける最小の正の整数であり、 2. * ax + by の形のすべての整数は d の倍数である。 x と y は (a, b) のベズー係数 (Bézout coefficients) と呼ばれる。それらは一意的ではない。ベズー係数の組は拡張ユークリッドの互除法によって計算できる。a と b がどちらも 0 でなければ、拡張ユークリッドの互除法から かつ であるような 2 つの組の一方が出る。 ベズーの補題は任意の主イデアル整域において正しいが、正しくないような整域が存在する。 (ja)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 3090933 (xsd:integer)
dbo:wikiPageLength
  • 9034 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 91172422 (xsd:integer)
dbo:wikiPageWikiLink
prop-en:title
  • Bézout's Identity (ja)
  • ユークリッドの互除法の証明と不定方程式 (ja)
  • 一次不定方程式ax+by=cの整数解 (ja)
  • Bézout's Identity (ja)
  • ユークリッドの互除法の証明と不定方程式 (ja)
  • 一次不定方程式ax+by=cの整数解 (ja)
prop-en:urlname
  • BezoutsIdentity (ja)
  • axbyc (ja)
  • euclid (ja)
  • BezoutsIdentity (ja)
  • axbyc (ja)
  • euclid (ja)
prop-en:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • ベズーの等式(ベズーのとうしき、英: Bézout's identity)は初等整数論における定理である。ベズーの補題(ベズーのほだい、英: Bézout's lemma)とも呼ばれる。 ベズーの等式 ― a と b を 0 でない整数とし、d をそれらの最大公約数とする。このとき整数 x と y が存在して ax + by = d となる。さらに、 1. * d は ax + by と書ける最小の正の整数であり、 2. * ax + by の形のすべての整数は d の倍数である。 x と y は (a, b) のベズー係数 (Bézout coefficients) と呼ばれる。それらは一意的ではない。ベズー係数の組は拡張ユークリッドの互除法によって計算できる。a と b がどちらも 0 でなければ、拡張ユークリッドの互除法から かつ であるような 2 つの組の一方が出る。 ベズーの補題は任意の主イデアル整域において正しいが、正しくないような整域が存在する。 (ja)
  • ベズーの等式(ベズーのとうしき、英: Bézout's identity)は初等整数論における定理である。ベズーの補題(ベズーのほだい、英: Bézout's lemma)とも呼ばれる。 ベズーの等式 ― a と b を 0 でない整数とし、d をそれらの最大公約数とする。このとき整数 x と y が存在して ax + by = d となる。さらに、 1. * d は ax + by と書ける最小の正の整数であり、 2. * ax + by の形のすべての整数は d の倍数である。 x と y は (a, b) のベズー係数 (Bézout coefficients) と呼ばれる。それらは一意的ではない。ベズー係数の組は拡張ユークリッドの互除法によって計算できる。a と b がどちらも 0 でなければ、拡張ユークリッドの互除法から かつ であるような 2 つの組の一方が出る。 ベズーの補題は任意の主イデアル整域において正しいが、正しくないような整域が存在する。 (ja)
rdfs:label
  • ベズーの等式 (ja)
  • ベズーの等式 (ja)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is owl:sameAs of
is foaf:primaryTopic of