Property |
Value |
dbo:abstract
|
- ベズーの等式(ベズーのとうしき、英: Bézout's identity)は初等整数論における定理である。ベズーの補題(ベズーのほだい、英: Bézout's lemma)とも呼ばれる。 ベズーの等式 ― a と b を 0 でない整数とし、d をそれらの最大公約数とする。このとき整数 x と y が存在して ax + by = d となる。さらに、 1.
* d は ax + by と書ける最小の正の整数であり、 2.
* ax + by の形のすべての整数は d の倍数である。 x と y は (a, b) のベズー係数 (Bézout coefficients) と呼ばれる。それらは一意的ではない。ベズー係数の組は拡張ユークリッドの互除法によって計算できる。a と b がどちらも 0 でなければ、拡張ユークリッドの互除法から かつ であるような 2 つの組の一方が出る。 ベズーの補題は任意の主イデアル整域において正しいが、正しくないような整域が存在する。 (ja)
- ベズーの等式(ベズーのとうしき、英: Bézout's identity)は初等整数論における定理である。ベズーの補題(ベズーのほだい、英: Bézout's lemma)とも呼ばれる。 ベズーの等式 ― a と b を 0 でない整数とし、d をそれらの最大公約数とする。このとき整数 x と y が存在して ax + by = d となる。さらに、 1.
* d は ax + by と書ける最小の正の整数であり、 2.
* ax + by の形のすべての整数は d の倍数である。 x と y は (a, b) のベズー係数 (Bézout coefficients) と呼ばれる。それらは一意的ではない。ベズー係数の組は拡張ユークリッドの互除法によって計算できる。a と b がどちらも 0 でなければ、拡張ユークリッドの互除法から かつ であるような 2 つの組の一方が出る。 ベズーの補題は任意の主イデアル整域において正しいが、正しくないような整域が存在する。 (ja)
|
dbo:wikiPageExternalLink
| |
dbo:wikiPageID
| |
dbo:wikiPageLength
|
- 9034 (xsd:nonNegativeInteger)
|
dbo:wikiPageRevisionID
| |
dbo:wikiPageWikiLink
| |
prop-en:title
|
- Bézout's Identity (ja)
- ユークリッドの互除法の証明と不定方程式 (ja)
- 一次不定方程式ax+by=cの整数解 (ja)
- Bézout's Identity (ja)
- ユークリッドの互除法の証明と不定方程式 (ja)
- 一次不定方程式ax+by=cの整数解 (ja)
|
prop-en:urlname
|
- BezoutsIdentity (ja)
- axbyc (ja)
- euclid (ja)
- BezoutsIdentity (ja)
- axbyc (ja)
- euclid (ja)
|
prop-en:wikiPageUsesTemplate
| |
dct:subject
| |
rdfs:comment
|
- ベズーの等式(ベズーのとうしき、英: Bézout's identity)は初等整数論における定理である。ベズーの補題(ベズーのほだい、英: Bézout's lemma)とも呼ばれる。 ベズーの等式 ― a と b を 0 でない整数とし、d をそれらの最大公約数とする。このとき整数 x と y が存在して ax + by = d となる。さらに、 1.
* d は ax + by と書ける最小の正の整数であり、 2.
* ax + by の形のすべての整数は d の倍数である。 x と y は (a, b) のベズー係数 (Bézout coefficients) と呼ばれる。それらは一意的ではない。ベズー係数の組は拡張ユークリッドの互除法によって計算できる。a と b がどちらも 0 でなければ、拡張ユークリッドの互除法から かつ であるような 2 つの組の一方が出る。 ベズーの補題は任意の主イデアル整域において正しいが、正しくないような整域が存在する。 (ja)
- ベズーの等式(ベズーのとうしき、英: Bézout's identity)は初等整数論における定理である。ベズーの補題(ベズーのほだい、英: Bézout's lemma)とも呼ばれる。 ベズーの等式 ― a と b を 0 でない整数とし、d をそれらの最大公約数とする。このとき整数 x と y が存在して ax + by = d となる。さらに、 1.
* d は ax + by と書ける最小の正の整数であり、 2.
* ax + by の形のすべての整数は d の倍数である。 x と y は (a, b) のベズー係数 (Bézout coefficients) と呼ばれる。それらは一意的ではない。ベズー係数の組は拡張ユークリッドの互除法によって計算できる。a と b がどちらも 0 でなければ、拡張ユークリッドの互除法から かつ であるような 2 つの組の一方が出る。 ベズーの補題は任意の主イデアル整域において正しいが、正しくないような整域が存在する。 (ja)
|
rdfs:label
| |
owl:sameAs
| |
prov:wasDerivedFrom
| |
foaf:isPrimaryTopicOf
| |
is dbo:wikiPageRedirects
of | |
is dbo:wikiPageWikiLink
of | |
is owl:sameAs
of | |
is foaf:primaryTopic
of | |