Property |
Value |
dbo:abstract
|
- 数学におけるバーンサイドの定理(バーンサイドのていり、英: Burnside theorem)は、位数が素数 p , q と非負整数 a , b により と書ける有限群 G は必ず可解群になることを主張する群論の定理である。これより、任意の非可換な有限単純群の位数は少なくとも3個以上の素因数を持たねばならない。 バーンサイドの定理は次のフィリップ・ホールによる名高い可解群の特徴づけの特別な場合である。 有限群が可解群であることと、任意の素数 p に関してホール p′-部分群が存在することは同値である。 (ja)
- 数学におけるバーンサイドの定理(バーンサイドのていり、英: Burnside theorem)は、位数が素数 p , q と非負整数 a , b により と書ける有限群 G は必ず可解群になることを主張する群論の定理である。これより、任意の非可換な有限単純群の位数は少なくとも3個以上の素因数を持たねばならない。 バーンサイドの定理は次のフィリップ・ホールによる名高い可解群の特徴づけの特別な場合である。 有限群が可解群であることと、任意の素数 p に関してホール p′-部分群が存在することは同値である。 (ja)
|
dbo:thumbnail
| |
dbo:wikiPageID
| |
dbo:wikiPageLength
|
- 5384 (xsd:nonNegativeInteger)
|
dbo:wikiPageRevisionID
| |
dbo:wikiPageWikiLink
| |
prop-en:wikiPageUsesTemplate
| |
dct:subject
| |
rdfs:comment
|
- 数学におけるバーンサイドの定理(バーンサイドのていり、英: Burnside theorem)は、位数が素数 p , q と非負整数 a , b により と書ける有限群 G は必ず可解群になることを主張する群論の定理である。これより、任意の非可換な有限単純群の位数は少なくとも3個以上の素因数を持たねばならない。 バーンサイドの定理は次のフィリップ・ホールによる名高い可解群の特徴づけの特別な場合である。 有限群が可解群であることと、任意の素数 p に関してホール p′-部分群が存在することは同値である。 (ja)
- 数学におけるバーンサイドの定理(バーンサイドのていり、英: Burnside theorem)は、位数が素数 p , q と非負整数 a , b により と書ける有限群 G は必ず可解群になることを主張する群論の定理である。これより、任意の非可換な有限単純群の位数は少なくとも3個以上の素因数を持たねばならない。 バーンサイドの定理は次のフィリップ・ホールによる名高い可解群の特徴づけの特別な場合である。 有限群が可解群であることと、任意の素数 p に関してホール p′-部分群が存在することは同値である。 (ja)
|
rdfs:label
|
- バーンサイドの定理 (ja)
- バーンサイドの定理 (ja)
|
prov:wasDerivedFrom
| |
foaf:depiction
| |
foaf:isPrimaryTopicOf
| |
is dbo:wikiPageRedirects
of | |
is dbo:wikiPageWikiLink
of | |
is owl:sameAs
of | |
is foaf:primaryTopic
of | |