数学、特に現代代数学と環論において、非可換環(ひかかんかん、英: noncommutative ring)とは乗法が可換ではない環である。つまり、a•b ≠ b•a なる R の元 a, b が存在する。非可換環論 (noncommutative algebra) は可換とは限らない環に適用できる結果の研究であるが、この分野の多くの重要な結果は特別な場合として可換環にも適用できる。
数学、特に現代代数学と環論において、非可換環(ひかかんかん、英: noncommutative ring)とは乗法が可換ではない環である。つまり、a•b ≠ b•a なる R の元 a, b が存在する。非可換環論 (noncommutative algebra) は可換とは限らない環に適用できる結果の研究であるが、この分野の多くの重要な結果は特別な場合として可換環にも適用できる。 (ja)
数学、特に現代代数学と環論において、非可換環(ひかかんかん、英: noncommutative ring)とは乗法が可換ではない環である。つまり、a•b ≠ b•a なる R の元 a, b が存在する。非可換環論 (noncommutative algebra) は可換とは限らない環に適用できる結果の研究であるが、この分野の多くの重要な結果は特別な場合として可換環にも適用できる。 (ja)
数学、特に現代代数学と環論において、非可換環(ひかかんかん、英: noncommutative ring)とは乗法が可換ではない環である。つまり、a•b ≠ b•a なる R の元 a, b が存在する。非可換環論 (noncommutative algebra) は可換とは限らない環に適用できる結果の研究であるが、この分野の多くの重要な結果は特別な場合として可換環にも適用できる。 (ja)
数学、特に現代代数学と環論において、非可換環(ひかかんかん、英: noncommutative ring)とは乗法が可換ではない環である。つまり、a•b ≠ b•a なる R の元 a, b が存在する。非可換環論 (noncommutative algebra) は可換とは限らない環に適用できる結果の研究であるが、この分野の多くの重要な結果は特別な場合として可換環にも適用できる。 (ja)