パスカルの三角形(パスカルのさんかくけい、英: Pascal's triangle)は、二項展開における係数を三角形状に並べたものである。ブレーズ・パスカル(1623年 - 1662年)の名前がついているが、実際にはパスカルより何世紀も前の数学者たちも研究していた。 この三角形の作り方は単純なルールに基づいている。まず最上段に 1 を配置する。それより下の段は両端には 1 を、それ以外の位置には右上の数と左上の数の和を配置する。例えば、5段目の左から2番目には、左上の 1 と右上の 3 の合計である 4 が入る。このようにして数を並べると、上から n 段目、左から k 番目の数は、二項係数 に等しい。これは、パスカルによって示された以下の式に基づいている。 負でない整数 n ≥ k に対して が成り立つ。

Property Value
dbo:abstract
  • パスカルの三角形(パスカルのさんかくけい、英: Pascal's triangle)は、二項展開における係数を三角形状に並べたものである。ブレーズ・パスカル(1623年 - 1662年)の名前がついているが、実際にはパスカルより何世紀も前の数学者たちも研究していた。 この三角形の作り方は単純なルールに基づいている。まず最上段に 1 を配置する。それより下の段は両端には 1 を、それ以外の位置には右上の数と左上の数の和を配置する。例えば、5段目の左から2番目には、左上の 1 と右上の 3 の合計である 4 が入る。このようにして数を並べると、上から n 段目、左から k 番目の数は、二項係数 に等しい。これは、パスカルによって示された以下の式に基づいている。 負でない整数 n ≥ k に対して が成り立つ。 (ja)
  • パスカルの三角形(パスカルのさんかくけい、英: Pascal's triangle)は、二項展開における係数を三角形状に並べたものである。ブレーズ・パスカル(1623年 - 1662年)の名前がついているが、実際にはパスカルより何世紀も前の数学者たちも研究していた。 この三角形の作り方は単純なルールに基づいている。まず最上段に 1 を配置する。それより下の段は両端には 1 を、それ以外の位置には右上の数と左上の数の和を配置する。例えば、5段目の左から2番目には、左上の 1 と右上の 3 の合計である 4 が入る。このようにして数を並べると、上から n 段目、左から k 番目の数は、二項係数 に等しい。これは、パスカルによって示された以下の式に基づいている。 負でない整数 n ≥ k に対して が成り立つ。 (ja)
dbo:thumbnail
dbo:wikiPageID
  • 66324 (xsd:integer)
dbo:wikiPageLength
  • 7228 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 91695704 (xsd:integer)
dbo:wikiPageWikiLink
prop-ja:author
  • Stover, Christopher and Weisstein, Eric W (ja)
  • Stover, Christopher and Weisstein, Eric W (ja)
prop-ja:title
  • Pascal's Triangle (ja)
  • Pascal's Triangle (ja)
prop-ja:urlname
  • PascalsTriangle (ja)
  • PascalsTriangle (ja)
prop-ja:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • パスカルの三角形(パスカルのさんかくけい、英: Pascal's triangle)は、二項展開における係数を三角形状に並べたものである。ブレーズ・パスカル(1623年 - 1662年)の名前がついているが、実際にはパスカルより何世紀も前の数学者たちも研究していた。 この三角形の作り方は単純なルールに基づいている。まず最上段に 1 を配置する。それより下の段は両端には 1 を、それ以外の位置には右上の数と左上の数の和を配置する。例えば、5段目の左から2番目には、左上の 1 と右上の 3 の合計である 4 が入る。このようにして数を並べると、上から n 段目、左から k 番目の数は、二項係数 に等しい。これは、パスカルによって示された以下の式に基づいている。 負でない整数 n ≥ k に対して が成り立つ。 (ja)
  • パスカルの三角形(パスカルのさんかくけい、英: Pascal's triangle)は、二項展開における係数を三角形状に並べたものである。ブレーズ・パスカル(1623年 - 1662年)の名前がついているが、実際にはパスカルより何世紀も前の数学者たちも研究していた。 この三角形の作り方は単純なルールに基づいている。まず最上段に 1 を配置する。それより下の段は両端には 1 を、それ以外の位置には右上の数と左上の数の和を配置する。例えば、5段目の左から2番目には、左上の 1 と右上の 3 の合計である 4 が入る。このようにして数を並べると、上から n 段目、左から k 番目の数は、二項係数 に等しい。これは、パスカルによって示された以下の式に基づいている。 負でない整数 n ≥ k に対して が成り立つ。 (ja)
rdfs:label
  • パスカルの三角形 (ja)
  • パスカルの三角形 (ja)
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:wikiPageDisambiguates of
is dbo:wikiPageWikiLink of
is prop-ja:notableIdeas of
is owl:sameAs of
is foaf:primaryTopic of