Data Table
PropertyValue
dbpedia-owl:abstract
  • 方程式(ほうていしき)とは、数学において、1つ以上の変数を含む等式のことである。(ただしこの場合、変数が特定の値を必ず取ることを導けないことに注意。)方程式を解くことは変数がどのような値のときに等式が成り立つかを決定することである。等式を満たす値は解と呼ばれる。恒等式とは異なり、方程式は変数の取り得るすべての値に対して等式が成り立つ必要はない。方程式には様々な種類があり、数学のすべての分野において目にする。方程式を調べるために使われる方法は方程式の種類に応じて異なる。代数学は特に2種類の方程式を研究する:多項式の方程式と、中でも線型方程式である。多項式方程式は、P をある多項式として、P(X) = 0 の形である。線型方程式は、a を線型写像、b をベクトルとして、a(x) + b = 0 の形である。それらを解くために、線型代数学や解析学から来る、アルゴリズム的あるいは幾何学的手法を用いる。変数の動く範囲を変えることにより方程式の性質が大幅に変わり得る。代数学はディオファントス方程式、すなわち係数と解が整数の方程式も研究する。用いられる手法は異なり、本質的に数論のものである。これらの方程式は一般に難しい。しばしば解の存在あるいは非存在を決定し、存在するときはその個数を調べるだけである。幾何学は図形を記述するために方程式を利用する。目的はやはり前の場合とは異なり、方程式は幾何学的性質を調べるために利用される。この文脈では方程式の種類に2つの大きなものがある。直交座標系における方程式とパラメトリック方程式である。解析学は f(x) = 0 の形の方程式を研究する。ここで f は、連続、微分可能、収縮、といったある種の性質を持った関数である。解析学の手法では方程式の解に収束する列を構成できる。目的はできるだけ正確に解を求められるようにすることである。微分方程式は1つ以上の関数とその導関数を含む方程式である。導関数を含まない関数の表示を見つけることによって解かれる。微分方程式は物理学、化学、生物学、経済学のような分野において、実生活の過程をモデルするために使われる。力学系は、解が列、あるいは、一変数あるいは多変数の関数であるような方程式によって定義される。中心的な問題が2つある。始状態と漸近的挙動である。各初期条件、例えば列あるいは関数の0での値、に対し、方程式は一意的な解を持つ。始状態の少しの変更によって解が少し変わることもある。しかしすべての場合でそうというわけではなく、初期条件のこの鋭敏性は第一の問題の目的である。解の極限でのあるいは漸近的振る舞いは変数が無限大に行くときの解の形に対応し、この振る舞いが第二の問題の目的である。解が発散しなければ、次のいずれかとなる。1つの値に近づくか、あるいは、循環的な振る舞い(周期関数か、値が同じ有限集合を同じ回数ずっと動き続ける列)に近づくか、あるいは、解が定義により決定的であったとしてもランダムに進展するように見えるカオスな振る舞いをする。"=" という記号はロバート・レコード (Robert Recorde, 1510–1558) によって発明された。同じ長さの平行な直線よりも等しかり得るものは存在しないと考えたのである。
dbpedia-owl:thumbnail
dbpedia-owl:wikiPageID
  • 7884 (xsd:integer)
dbpedia-owl:wikiPageLength
  • 10100 (xsd:integer)
dbpedia-owl:wikiPageOutDegree
  • 106 (xsd:integer)
dbpedia-owl:wikiPageRevisionID
  • 58514774 (xsd:integer)
dbpedia-owl:wikiPageWikiLink
prop-ja:wikiPageUsesTemplate
dcterms:subject
rdfs:comment
  • 方程式(ほうていしき)とは、数学において、1つ以上の変数を含む等式のことである。(ただしこの場合、変数が特定の値を必ず取ることを導けないことに注意。)方程式を解くことは変数がどのような値のときに等式が成り立つかを決定することである。等式を満たす値は解と呼ばれる。恒等式とは異なり、方程式は変数の取り得るすべての値に対して等式が成り立つ必要はない。方程式には様々な種類があり、数学のすべての分野において目にする。方程式を調べるために使われる方法は方程式の種類に応じて異なる。代数学は特に2種類の方程式を研究する:多項式の方程式と、中でも線型方程式である。多項式方程式は、P をある多項式として、P(X) = 0 の形である。線型方程式は、a を線型写像、b をベクトルとして、a(x) + b = 0 の形である。それらを解くために、線型代数学や解析学から来る、アルゴリズム的あるいは幾何学的手法を用いる。変数の動く範囲を変えることにより方程式の性質が大幅に変わり得る。代数学はディオファントス方程式、すなわち係数と解が整数の方程式も研究する。用いられる手法は異なり、本質的に数論のものである。これらの方程式は一般に難しい。しばしば解の存在あるいは非存在を決定し、存在するときはその個数を調べるだけである。幾何学は図形を記述するために方程式を利用する。目的はやはり前の場合とは異なり、方程式は幾何学的性質を調べるために利用される。この文脈では方程式の種類に2つの大きなものがある。直交座標系における方程式とパラメトリック方程式である。解析学は f(x) = 0 の形の方程式を研究する。ここで f は、連続、微分可能、収縮、といったある種の性質を持った関数である。解析学の手法では方程式の解に収束する列を構成できる。目的はできるだけ正確に解を求められるようにすることである。微分方程式は1つ以上の関数とその導関数を含む方程式である。導関数を含まない関数の表示を見つけることによって解かれる。微分方程式は物理学、化学、生物学、経済学のような分野において、実生活の過程をモデルするために使われる。力学系は、解が列、あるいは、一変数あるいは多変数の関数であるような方程式によって定義される。中心的な問題が2つある。始状態と漸近的挙動である。各初期条件、例えば列あるいは関数の0での値、に対し、方程式は一意的な解を持つ。始状態の少しの変更によって解が少し変わることもある。しかしすべての場合でそうというわけではなく、初期条件のこの鋭敏性は第一の問題の目的である。解の極限でのあるいは漸近的振る舞いは変数が無限大に行くときの解の形に対応し、この振る舞いが第二の問題の目的である。解が発散しなければ、次のいずれかとなる。1つの値に近づくか、あるいは、循環的な振る舞い(周期関数か、値が同じ有限集合を同じ回数ずっと動き続ける列)に近づくか、あるいは、解が定義により決定的であったとしてもランダムに進展するように見えるカオスな振る舞いをする。"=" という記号はロバート・レコード (Robert Recorde, 1510–1558) によって発明された。同じ長さの平行な直線よりも等しかり得るものは存在しないと考えたのである。
rdfs:label
  • 方程式
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbpedia-owl:wikiPageDisambiguates of
is dbpedia-owl:wikiPageRedirects of
is dbpedia-owl:wikiPageWikiLink of
is foaf:primaryTopic of