Property |
Value |
dbo:abstract
|
- 数学において、カッツ・ムーディ(・リー)代数(英: Kac–Moody algebra)とは、一般カルタン行列を用いて生成元と関係式によって定義できる、通常は無限次元の、リー代数である。独立に発見したヴィクトル・カッツとに因んで名づけられている。カッツ・ムーディ・リー環は有限次元半単純リー環の一般化であり、ルート系、既約表現、旗多様体との関連といった、リー環の構造に関係した多くの性質は、カッツ・ムーディ・リー環において自然な類似を持つ。 カッツ・ムーディ・リー環の中でもアフィン・リー環と呼ばれるクラスが、数学や理論物理学、特に共形場理論やの理論において、特に重要である。カッツは、組合せ論的な恒等式であるマクドナルド恒等式の、アフィン・リー環の表現論に基づいたエレガントな証明を発見した。Howard Garland と はロジャーズ・ラマヌジャン恒等式が類似の方法で導出できることを証明した。 (ja)
- 数学において、カッツ・ムーディ(・リー)代数(英: Kac–Moody algebra)とは、一般カルタン行列を用いて生成元と関係式によって定義できる、通常は無限次元の、リー代数である。独立に発見したヴィクトル・カッツとに因んで名づけられている。カッツ・ムーディ・リー環は有限次元半単純リー環の一般化であり、ルート系、既約表現、旗多様体との関連といった、リー環の構造に関係した多くの性質は、カッツ・ムーディ・リー環において自然な類似を持つ。 カッツ・ムーディ・リー環の中でもアフィン・リー環と呼ばれるクラスが、数学や理論物理学、特に共形場理論やの理論において、特に重要である。カッツは、組合せ論的な恒等式であるマクドナルド恒等式の、アフィン・リー環の表現論に基づいたエレガントな証明を発見した。Howard Garland と はロジャーズ・ラマヌジャン恒等式が類似の方法で導出できることを証明した。 (ja)
|
dbo:wikiPageExternalLink
| |
dbo:wikiPageID
| |
dbo:wikiPageLength
|
- 9787 (xsd:nonNegativeInteger)
|
dbo:wikiPageRevisionID
| |
dbo:wikiPageWikiLink
| |
prop-ja:title
|
- Kac–Moody algebra (ja)
- Kac–Moody algebra (ja)
|
prop-ja:urlname
|
- Kac–Moody_algebra (ja)
- Kac–Moody_algebra (ja)
|
prop-ja:wikiPageUsesTemplate
| |
dct:subject
| |
rdfs:comment
|
- 数学において、カッツ・ムーディ(・リー)代数(英: Kac–Moody algebra)とは、一般カルタン行列を用いて生成元と関係式によって定義できる、通常は無限次元の、リー代数である。独立に発見したヴィクトル・カッツとに因んで名づけられている。カッツ・ムーディ・リー環は有限次元半単純リー環の一般化であり、ルート系、既約表現、旗多様体との関連といった、リー環の構造に関係した多くの性質は、カッツ・ムーディ・リー環において自然な類似を持つ。 カッツ・ムーディ・リー環の中でもアフィン・リー環と呼ばれるクラスが、数学や理論物理学、特に共形場理論やの理論において、特に重要である。カッツは、組合せ論的な恒等式であるマクドナルド恒等式の、アフィン・リー環の表現論に基づいたエレガントな証明を発見した。Howard Garland と はロジャーズ・ラマヌジャン恒等式が類似の方法で導出できることを証明した。 (ja)
- 数学において、カッツ・ムーディ(・リー)代数(英: Kac–Moody algebra)とは、一般カルタン行列を用いて生成元と関係式によって定義できる、通常は無限次元の、リー代数である。独立に発見したヴィクトル・カッツとに因んで名づけられている。カッツ・ムーディ・リー環は有限次元半単純リー環の一般化であり、ルート系、既約表現、旗多様体との関連といった、リー環の構造に関係した多くの性質は、カッツ・ムーディ・リー環において自然な類似を持つ。 カッツ・ムーディ・リー環の中でもアフィン・リー環と呼ばれるクラスが、数学や理論物理学、特に共形場理論やの理論において、特に重要である。カッツは、組合せ論的な恒等式であるマクドナルド恒等式の、アフィン・リー環の表現論に基づいたエレガントな証明を発見した。Howard Garland と はロジャーズ・ラマヌジャン恒等式が類似の方法で導出できることを証明した。 (ja)
|
rdfs:label
|
- カッツ・ムーディ代数 (ja)
- カッツ・ムーディ代数 (ja)
|
owl:sameAs
| |
prov:wasDerivedFrom
| |
foaf:isPrimaryTopicOf
| |
is dbo:wikiPageRedirects
of | |
is dbo:wikiPageWikiLink
of | |
is prop-ja:knownFor
of | |
is owl:sameAs
of | |
is foaf:primaryTopic
of | |