リー群論,リー環論,およびそれらの表現論において,リー環の拡大 (Lie algebra extension) e とは,与えられたリー環 g を別のリー環 h によって「拡大」することである.拡大はいろいろな方法で生じる.2つのリー環の直和を取ることによって得られる自明な拡大 (trivial extension) がある.別の種類の拡大は分裂拡大 (split extension) や中心拡大 (central extension) である.拡大は,例えばからリー環を作るときに,自然に生じる.そのようなリー環は中心電荷を持つ.w有限次元単純リー環上の多項式ループ代数から始めて,2つの拡大,中心拡大と微分による拡大を施すと,untwisted アファインカッツ・ムーディ代数に同型なリー環を得る.中心拡大したループ代数を用いて2次元時空のを構成できる.ヴィラソロ代数はヴィット代数の普遍中心拡大である. 後半の大部分はリー環の拡大が実際有用である分野である数学と物理学双方での応用の背景資料に割かれている.かっこつきリンク,(),はそれが有益であろうところで提供される.

Property Value
dbo:abstract
  • リー群論,リー環論,およびそれらの表現論において,リー環の拡大 (Lie algebra extension) e とは,与えられたリー環 g を別のリー環 h によって「拡大」することである.拡大はいろいろな方法で生じる.2つのリー環の直和を取ることによって得られる自明な拡大 (trivial extension) がある.別の種類の拡大は分裂拡大 (split extension) や中心拡大 (central extension) である.拡大は,例えばからリー環を作るときに,自然に生じる.そのようなリー環は中心電荷を持つ.w有限次元単純リー環上の多項式ループ代数から始めて,2つの拡大,中心拡大と微分による拡大を施すと,untwisted アファインカッツ・ムーディ代数に同型なリー環を得る.中心拡大したループ代数を用いて2次元時空のを構成できる.ヴィラソロ代数はヴィット代数の普遍中心拡大である. 中心拡大は物理学で必要とされる,なぜならば量子化された系の対称性を表す群は通常古典的な対称変換群の中心拡大であり,同様に量子系の対応する symmetry リー環は一般に古典的な symmetry algebra の中心拡大であるからである.カッツ・ムーディ代数は統一超弦理論の対称変換群であると予想されている.中心拡大されたリー環は場の量子論,特に共形場理論,弦理論とM理論において,支配的な役割を果たす. 後半の大部分はリー環の拡大が実際有用である分野である数学と物理学双方での応用の背景資料に割かれている.かっこつきリンク,(),はそれが有益であろうところで提供される. (ja)
  • リー群論,リー環論,およびそれらの表現論において,リー環の拡大 (Lie algebra extension) e とは,与えられたリー環 g を別のリー環 h によって「拡大」することである.拡大はいろいろな方法で生じる.2つのリー環の直和を取ることによって得られる自明な拡大 (trivial extension) がある.別の種類の拡大は分裂拡大 (split extension) や中心拡大 (central extension) である.拡大は,例えばからリー環を作るときに,自然に生じる.そのようなリー環は中心電荷を持つ.w有限次元単純リー環上の多項式ループ代数から始めて,2つの拡大,中心拡大と微分による拡大を施すと,untwisted アファインカッツ・ムーディ代数に同型なリー環を得る.中心拡大したループ代数を用いて2次元時空のを構成できる.ヴィラソロ代数はヴィット代数の普遍中心拡大である. 中心拡大は物理学で必要とされる,なぜならば量子化された系の対称性を表す群は通常古典的な対称変換群の中心拡大であり,同様に量子系の対応する symmetry リー環は一般に古典的な symmetry algebra の中心拡大であるからである.カッツ・ムーディ代数は統一超弦理論の対称変換群であると予想されている.中心拡大されたリー環は場の量子論,特に共形場理論,弦理論とM理論において,支配的な役割を果たす. 後半の大部分はリー環の拡大が実際有用である分野である数学と物理学双方での応用の背景資料に割かれている.かっこつきリンク,(),はそれが有益であろうところで提供される. (ja)
dbo:thumbnail
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 3555968 (xsd:integer)
dbo:wikiPageLength
  • 79409 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 68731796 (xsd:integer)
dbo:wikiPageWikiLink
prop-ja:bgcolor
  • #F9FFF7 (ja)
  • #F9FFF7 (ja)
prop-ja:borderColour
  • #0073CF (ja)
  • #0073CF (ja)
prop-ja:cellpadding
  • 6 (xsd:integer)
prop-ja:equation
  • : (ja)
  • : (ja)
prop-ja:indent
  • : (ja)
  • : (ja)
prop-ja:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • リー群論,リー環論,およびそれらの表現論において,リー環の拡大 (Lie algebra extension) e とは,与えられたリー環 g を別のリー環 h によって「拡大」することである.拡大はいろいろな方法で生じる.2つのリー環の直和を取ることによって得られる自明な拡大 (trivial extension) がある.別の種類の拡大は分裂拡大 (split extension) や中心拡大 (central extension) である.拡大は,例えばからリー環を作るときに,自然に生じる.そのようなリー環は中心電荷を持つ.w有限次元単純リー環上の多項式ループ代数から始めて,2つの拡大,中心拡大と微分による拡大を施すと,untwisted アファインカッツ・ムーディ代数に同型なリー環を得る.中心拡大したループ代数を用いて2次元時空のを構成できる.ヴィラソロ代数はヴィット代数の普遍中心拡大である. 後半の大部分はリー環の拡大が実際有用である分野である数学と物理学双方での応用の背景資料に割かれている.かっこつきリンク,(),はそれが有益であろうところで提供される. (ja)
  • リー群論,リー環論,およびそれらの表現論において,リー環の拡大 (Lie algebra extension) e とは,与えられたリー環 g を別のリー環 h によって「拡大」することである.拡大はいろいろな方法で生じる.2つのリー環の直和を取ることによって得られる自明な拡大 (trivial extension) がある.別の種類の拡大は分裂拡大 (split extension) や中心拡大 (central extension) である.拡大は,例えばからリー環を作るときに,自然に生じる.そのようなリー環は中心電荷を持つ.w有限次元単純リー環上の多項式ループ代数から始めて,2つの拡大,中心拡大と微分による拡大を施すと,untwisted アファインカッツ・ムーディ代数に同型なリー環を得る.中心拡大したループ代数を用いて2次元時空のを構成できる.ヴィラソロ代数はヴィット代数の普遍中心拡大である. 後半の大部分はリー環の拡大が実際有用である分野である数学と物理学双方での応用の背景資料に割かれている.かっこつきリンク,(),はそれが有益であろうところで提供される. (ja)
rdfs:label
  • リー環の拡大 (ja)
  • リー環の拡大 (ja)
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:wikiPageDisambiguates of
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is owl:sameAs of
is foaf:primaryTopic of