数学における点(てん、英: point)の概念は、今日では非常に広範な意味を持つものとして扱われる。歴史的には、「点」というものは、古代ギリシアの幾何学者が想定したように、直線・平面・空間を形作る根元的な「構成要素」、「原子」となるべきものであり、直線、平面、空間は点からなる集合()ということになる。しかし、19世紀の終わりごろにゲオルク・カントールによる集合論の創始と、それに続く数多くの「数学的構造」の出現があって以降は、その文脈で「空間」と呼ぶことにした任意の集合における任意の元という意味で「点」という用語が用いられる(例えば、距離空間の点、位相空間の点、射影空間の点、など)。古代ギリシア人は「点」と「数」とを区別して扱ったが、それとは対照的に、この文脈では「数(実数)」は実数直線上の点であるという言い回しを用いることができる。 つまり数学者にとって最も一般の意味での「点」とは、集合が「空間」と捉えられかつ公理によって規定される特定の性質を備えているという状況さえあれば十分で、そのような「空間」の任意の元がすなわち「点」なのである。したがって、今日における術語「空間」は全体集合に、また術語「点」は元に、ほぼ同義である。考えている問題がもはや幾何学とは何の関係もないような場合でさえ、何らかの示唆的な期待によって「点」や「空間」という語が用いられている。

Property Value
dbo:abstract
  • 数学における点(てん、英: point)の概念は、今日では非常に広範な意味を持つものとして扱われる。歴史的には、「点」というものは、古代ギリシアの幾何学者が想定したように、直線・平面・空間を形作る根元的な「構成要素」、「原子」となるべきものであり、直線、平面、空間は点からなる集合()ということになる。しかし、19世紀の終わりごろにゲオルク・カントールによる集合論の創始と、それに続く数多くの「数学的構造」の出現があって以降は、その文脈で「空間」と呼ぶことにした任意の集合における任意の元という意味で「点」という用語が用いられる(例えば、距離空間の点、位相空間の点、射影空間の点、など)。古代ギリシア人は「点」と「数」とを区別して扱ったが、それとは対照的に、この文脈では「数(実数)」は実数直線上の点であるという言い回しを用いることができる。 つまり数学者にとって最も一般の意味での「点」とは、集合が「空間」と捉えられかつ公理によって規定される特定の性質を備えているという状況さえあれば十分で、そのような「空間」の任意の元がすなわち「点」なのである。したがって、今日における術語「空間」は全体集合に、また術語「点」は元に、ほぼ同義である。考えている問題がもはや幾何学とは何の関係もないような場合でさえ、何らかの示唆的な期待によって「点」や「空間」という語が用いられている。 (ja)
  • 数学における点(てん、英: point)の概念は、今日では非常に広範な意味を持つものとして扱われる。歴史的には、「点」というものは、古代ギリシアの幾何学者が想定したように、直線・平面・空間を形作る根元的な「構成要素」、「原子」となるべきものであり、直線、平面、空間は点からなる集合()ということになる。しかし、19世紀の終わりごろにゲオルク・カントールによる集合論の創始と、それに続く数多くの「数学的構造」の出現があって以降は、その文脈で「空間」と呼ぶことにした任意の集合における任意の元という意味で「点」という用語が用いられる(例えば、距離空間の点、位相空間の点、射影空間の点、など)。古代ギリシア人は「点」と「数」とを区別して扱ったが、それとは対照的に、この文脈では「数(実数)」は実数直線上の点であるという言い回しを用いることができる。 つまり数学者にとって最も一般の意味での「点」とは、集合が「空間」と捉えられかつ公理によって規定される特定の性質を備えているという状況さえあれば十分で、そのような「空間」の任意の元がすなわち「点」なのである。したがって、今日における術語「空間」は全体集合に、また術語「点」は元に、ほぼ同義である。考えている問題がもはや幾何学とは何の関係もないような場合でさえ、何らかの示唆的な期待によって「点」や「空間」という語が用いられている。 (ja)
dbo:wikiPageID
  • 12139 (xsd:integer)
dbo:wikiPageLength
  • 1955 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 91827186 (xsd:integer)
dbo:wikiPageWikiLink
prop-ja:author
  • Stover, Christopher; Weisstein, Eric W. (ja)
  • Stover, Christopher; Weisstein, Eric W. (ja)
prop-ja:title
  • Point (ja)
  • point (ja)
  • Definition:Point (ja)
  • Point (ja)
  • point (ja)
  • Definition:Point (ja)
prop-ja:urlname
  • Point (ja)
  • point (ja)
  • Definition:Point (ja)
  • Point (ja)
  • point (ja)
  • Definition:Point (ja)
prop-ja:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • 数学における点(てん、英: point)の概念は、今日では非常に広範な意味を持つものとして扱われる。歴史的には、「点」というものは、古代ギリシアの幾何学者が想定したように、直線・平面・空間を形作る根元的な「構成要素」、「原子」となるべきものであり、直線、平面、空間は点からなる集合()ということになる。しかし、19世紀の終わりごろにゲオルク・カントールによる集合論の創始と、それに続く数多くの「数学的構造」の出現があって以降は、その文脈で「空間」と呼ぶことにした任意の集合における任意の元という意味で「点」という用語が用いられる(例えば、距離空間の点、位相空間の点、射影空間の点、など)。古代ギリシア人は「点」と「数」とを区別して扱ったが、それとは対照的に、この文脈では「数(実数)」は実数直線上の点であるという言い回しを用いることができる。 つまり数学者にとって最も一般の意味での「点」とは、集合が「空間」と捉えられかつ公理によって規定される特定の性質を備えているという状況さえあれば十分で、そのような「空間」の任意の元がすなわち「点」なのである。したがって、今日における術語「空間」は全体集合に、また術語「点」は元に、ほぼ同義である。考えている問題がもはや幾何学とは何の関係もないような場合でさえ、何らかの示唆的な期待によって「点」や「空間」という語が用いられている。 (ja)
  • 数学における点(てん、英: point)の概念は、今日では非常に広範な意味を持つものとして扱われる。歴史的には、「点」というものは、古代ギリシアの幾何学者が想定したように、直線・平面・空間を形作る根元的な「構成要素」、「原子」となるべきものであり、直線、平面、空間は点からなる集合()ということになる。しかし、19世紀の終わりごろにゲオルク・カントールによる集合論の創始と、それに続く数多くの「数学的構造」の出現があって以降は、その文脈で「空間」と呼ぶことにした任意の集合における任意の元という意味で「点」という用語が用いられる(例えば、距離空間の点、位相空間の点、射影空間の点、など)。古代ギリシア人は「点」と「数」とを区別して扱ったが、それとは対照的に、この文脈では「数(実数)」は実数直線上の点であるという言い回しを用いることができる。 つまり数学者にとって最も一般の意味での「点」とは、集合が「空間」と捉えられかつ公理によって規定される特定の性質を備えているという状況さえあれば十分で、そのような「空間」の任意の元がすなわち「点」なのである。したがって、今日における術語「空間」は全体集合に、また術語「点」は元に、ほぼ同義である。考えている問題がもはや幾何学とは何の関係もないような場合でさえ、何らかの示唆的な期待によって「点」や「空間」という語が用いられている。 (ja)
rdfs:label
  • 点 (数学) (ja)
  • 点 (数学) (ja)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is owl:sameAs of
is foaf:primaryTopic of