Property |
Value |
dbo:abstract
|
- 数学において偶関数(ぐうかんすう、英: even function)および奇関数(きかんすう、英: odd function)は、変数の符号を反転させる変換に関してそれぞれ、特定の対称性を満足する関数である。これらは解析学の多くの分野、殊に冪級数やフーリエ級数に関する理論において重要である。名称は、この性質を満足する冪関数の冪指数の(整数としての)偶奇に由来する(すなわち、関数 f(x) = xn は n が偶数のとき偶関数であり、n が奇数のとき奇関数である)。 この、関数の偶奇性 (parity of function) の概念は、始域および終域がともに加法逆元(マイナス元)を持つような場合であれば常に意味を成す。加法逆元を持つような代数系には、例えば任意のアーベル群、(必ずしも可換でない)環や体、あるいはベクトル空間などが挙げられるから、従って例えば実変数実数値の関数やベクトル変数複素数値の関数といったようなものに対して、その偶奇性を定めることができる。 以下では特に断りのない限り、それら函数のグラフの対称性を詳らかにするために、実変数実数値函数に関して述べる。 (ja)
- 数学において偶関数(ぐうかんすう、英: even function)および奇関数(きかんすう、英: odd function)は、変数の符号を反転させる変換に関してそれぞれ、特定の対称性を満足する関数である。これらは解析学の多くの分野、殊に冪級数やフーリエ級数に関する理論において重要である。名称は、この性質を満足する冪関数の冪指数の(整数としての)偶奇に由来する(すなわち、関数 f(x) = xn は n が偶数のとき偶関数であり、n が奇数のとき奇関数である)。 この、関数の偶奇性 (parity of function) の概念は、始域および終域がともに加法逆元(マイナス元)を持つような場合であれば常に意味を成す。加法逆元を持つような代数系には、例えば任意のアーベル群、(必ずしも可換でない)環や体、あるいはベクトル空間などが挙げられるから、従って例えば実変数実数値の関数やベクトル変数複素数値の関数といったようなものに対して、その偶奇性を定めることができる。 以下では特に断りのない限り、それら函数のグラフの対称性を詳らかにするために、実変数実数値函数に関して述べる。 (ja)
|
dbo:thumbnail
| |
dbo:wikiPageExternalLink
| |
dbo:wikiPageID
| |
dbo:wikiPageLength
|
- 5246 (xsd:nonNegativeInteger)
|
dbo:wikiPageRevisionID
| |
dbo:wikiPageWikiLink
| |
prop-ja:author
|
- yark, matte, Cam McLeman (ja)
- yark, matte, Cam McLeman (ja)
|
prop-ja:title
|
- Even Function (ja)
- Even and odd functions (ja)
- Odd Function (ja)
- Even Function (ja)
- Even and odd functions (ja)
- Odd Function (ja)
|
prop-ja:urlname
|
- EvenFunction (ja)
- OddFunction (ja)
- evenandoddfunctions (ja)
- EvenFunction (ja)
- OddFunction (ja)
- evenandoddfunctions (ja)
|
prop-ja:wikiPageUsesTemplate
| |
dct:subject
| |
rdfs:comment
|
- 数学において偶関数(ぐうかんすう、英: even function)および奇関数(きかんすう、英: odd function)は、変数の符号を反転させる変換に関してそれぞれ、特定の対称性を満足する関数である。これらは解析学の多くの分野、殊に冪級数やフーリエ級数に関する理論において重要である。名称は、この性質を満足する冪関数の冪指数の(整数としての)偶奇に由来する(すなわち、関数 f(x) = xn は n が偶数のとき偶関数であり、n が奇数のとき奇関数である)。 この、関数の偶奇性 (parity of function) の概念は、始域および終域がともに加法逆元(マイナス元)を持つような場合であれば常に意味を成す。加法逆元を持つような代数系には、例えば任意のアーベル群、(必ずしも可換でない)環や体、あるいはベクトル空間などが挙げられるから、従って例えば実変数実数値の関数やベクトル変数複素数値の関数といったようなものに対して、その偶奇性を定めることができる。 以下では特に断りのない限り、それら函数のグラフの対称性を詳らかにするために、実変数実数値函数に関して述べる。 (ja)
- 数学において偶関数(ぐうかんすう、英: even function)および奇関数(きかんすう、英: odd function)は、変数の符号を反転させる変換に関してそれぞれ、特定の対称性を満足する関数である。これらは解析学の多くの分野、殊に冪級数やフーリエ級数に関する理論において重要である。名称は、この性質を満足する冪関数の冪指数の(整数としての)偶奇に由来する(すなわち、関数 f(x) = xn は n が偶数のとき偶関数であり、n が奇数のとき奇関数である)。 この、関数の偶奇性 (parity of function) の概念は、始域および終域がともに加法逆元(マイナス元)を持つような場合であれば常に意味を成す。加法逆元を持つような代数系には、例えば任意のアーベル群、(必ずしも可換でない)環や体、あるいはベクトル空間などが挙げられるから、従って例えば実変数実数値の関数やベクトル変数複素数値の関数といったようなものに対して、その偶奇性を定めることができる。 以下では特に断りのない限り、それら函数のグラフの対称性を詳らかにするために、実変数実数値函数に関して述べる。 (ja)
|
rdfs:label
|
- 偶関数と奇関数 (ja)
- 偶関数と奇関数 (ja)
|
owl:sameAs
| |
prov:wasDerivedFrom
| |
foaf:depiction
| |
foaf:isPrimaryTopicOf
| |
is dbo:wikiPageRedirects
of | |
is dbo:wikiPageWikiLink
of | |
is owl:sameAs
of | |
is foaf:primaryTopic
of | |