Property |
Value |
dbo:abstract
|
- 物理学や幾何学では、密接に関連した2つのベクトル空間がある。これは通常は3次元であるが、一般的にはどんな有限次元の空間でもよい。 位置空間(いちくうかん、英: position space)、あるいは実空間(じつくうかん、英: real space)ないし座標空間(ざひょうくうかん、英: coordinate space)などとも呼ばれる、は空間の全ての位置ベクトル r の集合で、長さの次元を持つ。位置ベクトルは空間中の場所を定義する。ある位置ベクトルは位置空間上の一つの点に対応づけられる。点粒子の運動は時間を変数として位置ベクトルを与える関数によって表され、関数によって与えられる位置ベクトル全体の集合は、粒子の描く軌道に対応づけられる。 運動量空間(うんどうりょうくうかん、英: momentum space)は、系が持ちうる全ての運動量ベクトル p の集合である。粒子の運動量ベクトルは、粒子の運動に対応し、[質量][長さ][時間]−1の次元を持つ。 数学的には、位置と運動量の双対性はポントリャーギン双対性の1つの例である。特に位置空間で関数 f(r) が与えられたとき、そのフーリエ変換は運動量空間における関数 φ(p) となる。逆に、運動量空間の関数を逆変換したものは位置空間の関数となる。 これらの量や考えは古典物理学と量子物理学を含むすべての(微視的)理論に通底するものである。系は構成粒子の位置または運動量を用いて記述でき、どちらの形式でも考えている系について等価な情報を与える。 位置と運動量の他に、波動に対して定義すると有用な量がある。波数ベクトル k(または単に"kベクトル"とも呼ばれる)は長さの逆数の次元を持ち、時間の逆数の次元を持つ角周波数 ω との類似性を持つ。全ての波数ベクトルの集合をk空間という。通常、位置 r は波数 k よりも直観的にわかりやすく単純であるが、固体物理学などではその逆のことが言える。 量子力学における位置と運動量の双対性について、基礎的な結果として(ハイゼンベルクの)不確定性原理とが挙げられる。不確定性原理 ΔxΔp ≥ ħ/2 は、位置と運動量を同時に正確に知ることはできないことを述べている(Δx, Δp はそれぞれ位置と運動量の不確定性を表す。ħ は換算プランク定数である)。ド・ブロイの関係式 p = ħk は、自由粒子の運動量と波数は互いに比例関係にあることを述べている。ド・ブロイの関係を念頭に置き、文脈に応じて「運動量」と「波数」という言葉を使い分けることがある。しかしド・ブロイの関係は結晶中において成り立たない。 (ja)
- 物理学や幾何学では、密接に関連した2つのベクトル空間がある。これは通常は3次元であるが、一般的にはどんな有限次元の空間でもよい。 位置空間(いちくうかん、英: position space)、あるいは実空間(じつくうかん、英: real space)ないし座標空間(ざひょうくうかん、英: coordinate space)などとも呼ばれる、は空間の全ての位置ベクトル r の集合で、長さの次元を持つ。位置ベクトルは空間中の場所を定義する。ある位置ベクトルは位置空間上の一つの点に対応づけられる。点粒子の運動は時間を変数として位置ベクトルを与える関数によって表され、関数によって与えられる位置ベクトル全体の集合は、粒子の描く軌道に対応づけられる。 運動量空間(うんどうりょうくうかん、英: momentum space)は、系が持ちうる全ての運動量ベクトル p の集合である。粒子の運動量ベクトルは、粒子の運動に対応し、[質量][長さ][時間]−1の次元を持つ。 数学的には、位置と運動量の双対性はポントリャーギン双対性の1つの例である。特に位置空間で関数 f(r) が与えられたとき、そのフーリエ変換は運動量空間における関数 φ(p) となる。逆に、運動量空間の関数を逆変換したものは位置空間の関数となる。 これらの量や考えは古典物理学と量子物理学を含むすべての(微視的)理論に通底するものである。系は構成粒子の位置または運動量を用いて記述でき、どちらの形式でも考えている系について等価な情報を与える。 位置と運動量の他に、波動に対して定義すると有用な量がある。波数ベクトル k(または単に"kベクトル"とも呼ばれる)は長さの逆数の次元を持ち、時間の逆数の次元を持つ角周波数 ω との類似性を持つ。全ての波数ベクトルの集合をk空間という。通常、位置 r は波数 k よりも直観的にわかりやすく単純であるが、固体物理学などではその逆のことが言える。 量子力学における位置と運動量の双対性について、基礎的な結果として(ハイゼンベルクの)不確定性原理とが挙げられる。不確定性原理 ΔxΔp ≥ ħ/2 は、位置と運動量を同時に正確に知ることはできないことを述べている(Δx, Δp はそれぞれ位置と運動量の不確定性を表す。ħ は換算プランク定数である)。ド・ブロイの関係式 p = ħk は、自由粒子の運動量と波数は互いに比例関係にあることを述べている。ド・ブロイの関係を念頭に置き、文脈に応じて「運動量」と「波数」という言葉を使い分けることがある。しかしド・ブロイの関係は結晶中において成り立たない。 (ja)
|
dbo:wikiPageID
| |
dbo:wikiPageLength
|
- 9253 (xsd:nonNegativeInteger)
|
dbo:wikiPageRevisionID
| |
dbo:wikiPageWikiLink
| |
prop-en:wikiPageUsesTemplate
| |
dct:subject
| |
rdfs:comment
|
- 物理学や幾何学では、密接に関連した2つのベクトル空間がある。これは通常は3次元であるが、一般的にはどんな有限次元の空間でもよい。 位置空間(いちくうかん、英: position space)、あるいは実空間(じつくうかん、英: real space)ないし座標空間(ざひょうくうかん、英: coordinate space)などとも呼ばれる、は空間の全ての位置ベクトル r の集合で、長さの次元を持つ。位置ベクトルは空間中の場所を定義する。ある位置ベクトルは位置空間上の一つの点に対応づけられる。点粒子の運動は時間を変数として位置ベクトルを与える関数によって表され、関数によって与えられる位置ベクトル全体の集合は、粒子の描く軌道に対応づけられる。 運動量空間(うんどうりょうくうかん、英: momentum space)は、系が持ちうる全ての運動量ベクトル p の集合である。粒子の運動量ベクトルは、粒子の運動に対応し、[質量][長さ][時間]−1の次元を持つ。 数学的には、位置と運動量の双対性はポントリャーギン双対性の1つの例である。特に位置空間で関数 f(r) が与えられたとき、そのフーリエ変換は運動量空間における関数 φ(p) となる。逆に、運動量空間の関数を逆変換したものは位置空間の関数となる。 (ja)
- 物理学や幾何学では、密接に関連した2つのベクトル空間がある。これは通常は3次元であるが、一般的にはどんな有限次元の空間でもよい。 位置空間(いちくうかん、英: position space)、あるいは実空間(じつくうかん、英: real space)ないし座標空間(ざひょうくうかん、英: coordinate space)などとも呼ばれる、は空間の全ての位置ベクトル r の集合で、長さの次元を持つ。位置ベクトルは空間中の場所を定義する。ある位置ベクトルは位置空間上の一つの点に対応づけられる。点粒子の運動は時間を変数として位置ベクトルを与える関数によって表され、関数によって与えられる位置ベクトル全体の集合は、粒子の描く軌道に対応づけられる。 運動量空間(うんどうりょうくうかん、英: momentum space)は、系が持ちうる全ての運動量ベクトル p の集合である。粒子の運動量ベクトルは、粒子の運動に対応し、[質量][長さ][時間]−1の次元を持つ。 数学的には、位置と運動量の双対性はポントリャーギン双対性の1つの例である。特に位置空間で関数 f(r) が与えられたとき、そのフーリエ変換は運動量空間における関数 φ(p) となる。逆に、運動量空間の関数を逆変換したものは位置空間の関数となる。 (ja)
|
rdfs:label
|
- 位置空間と運動量空間 (ja)
- 位置空間と運動量空間 (ja)
|
prov:wasDerivedFrom
| |
foaf:isPrimaryTopicOf
| |
is dbo:wikiPageRedirects
of | |
is dbo:wikiPageWikiLink
of | |
is owl:sameAs
of | |
is foaf:primaryTopic
of | |