ハートリー=フォック方程式(ハートリーフォックほうていしき、英: Hartree–Fock equation)は、多電子系を表すハミルトニアンの固有関数(波動関数)を一個のスレーター行列式で近似(ハートリー=フォック近似)した場合に、それが基底状態に対する最良の近似となるような(スピンを含む)1電子分子軌道の組を探し出すための方程式である。ウラジミール・フォックによって導かれた。分子軌道法の基本となる方程式である。 ハートリー=フォック方程式 は、の近似的な解が与えられた場合、方程式中の置換することで方程式 が誘導される。すなわちこの方程式のには固有関数は含まれず、普通の固有値方程式として解くことが出来る。これにより得られた解を近似解として適用し再帰的に解く事で、多電子系のフェルミ粒子(この場合は電子)全体の作る平均場と、その中で一粒子運動をするフェルミ粒子の波動関数を自己無撞着に決定することができる(SCF法)。

Property Value
dbo:abstract
  • ハートリー=フォック方程式(ハートリーフォックほうていしき、英: Hartree–Fock equation)は、多電子系を表すハミルトニアンの固有関数(波動関数)を一個のスレーター行列式で近似(ハートリー=フォック近似)した場合に、それが基底状態に対する最良の近似となるような(スピンを含む)1電子分子軌道の組を探し出すための方程式である。ウラジミール・フォックによって導かれた。分子軌道法の基本となる方程式である。 ハートリー=フォック方程式 は、の近似的な解が与えられた場合、方程式中の置換することで方程式 が誘導される。すなわちこの方程式のには固有関数は含まれず、普通の固有値方程式として解くことが出来る。これにより得られた解を近似解として適用し再帰的に解く事で、多電子系のフェルミ粒子(この場合は電子)全体の作る平均場と、その中で一粒子運動をするフェルミ粒子の波動関数を自己無撞着に決定することができる(SCF法)。 (ja)
  • ハートリー=フォック方程式(ハートリーフォックほうていしき、英: Hartree–Fock equation)は、多電子系を表すハミルトニアンの固有関数(波動関数)を一個のスレーター行列式で近似(ハートリー=フォック近似)した場合に、それが基底状態に対する最良の近似となるような(スピンを含む)1電子分子軌道の組を探し出すための方程式である。ウラジミール・フォックによって導かれた。分子軌道法の基本となる方程式である。 ハートリー=フォック方程式 は、の近似的な解が与えられた場合、方程式中の置換することで方程式 が誘導される。すなわちこの方程式のには固有関数は含まれず、普通の固有値方程式として解くことが出来る。これにより得られた解を近似解として適用し再帰的に解く事で、多電子系のフェルミ粒子(この場合は電子)全体の作る平均場と、その中で一粒子運動をするフェルミ粒子の波動関数を自己無撞着に決定することができる(SCF法)。 (ja)
dbo:wikiPageID
  • 9825 (xsd:integer)
dbo:wikiPageLength
  • 5630 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 91331585 (xsd:integer)
dbo:wikiPageWikiLink
prop-en:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • ハートリー=フォック方程式(ハートリーフォックほうていしき、英: Hartree–Fock equation)は、多電子系を表すハミルトニアンの固有関数(波動関数)を一個のスレーター行列式で近似(ハートリー=フォック近似)した場合に、それが基底状態に対する最良の近似となるような(スピンを含む)1電子分子軌道の組を探し出すための方程式である。ウラジミール・フォックによって導かれた。分子軌道法の基本となる方程式である。 ハートリー=フォック方程式 は、の近似的な解が与えられた場合、方程式中の置換することで方程式 が誘導される。すなわちこの方程式のには固有関数は含まれず、普通の固有値方程式として解くことが出来る。これにより得られた解を近似解として適用し再帰的に解く事で、多電子系のフェルミ粒子(この場合は電子)全体の作る平均場と、その中で一粒子運動をするフェルミ粒子の波動関数を自己無撞着に決定することができる(SCF法)。 (ja)
  • ハートリー=フォック方程式(ハートリーフォックほうていしき、英: Hartree–Fock equation)は、多電子系を表すハミルトニアンの固有関数(波動関数)を一個のスレーター行列式で近似(ハートリー=フォック近似)した場合に、それが基底状態に対する最良の近似となるような(スピンを含む)1電子分子軌道の組を探し出すための方程式である。ウラジミール・フォックによって導かれた。分子軌道法の基本となる方程式である。 ハートリー=フォック方程式 は、の近似的な解が与えられた場合、方程式中の置換することで方程式 が誘導される。すなわちこの方程式のには固有関数は含まれず、普通の固有値方程式として解くことが出来る。これにより得られた解を近似解として適用し再帰的に解く事で、多電子系のフェルミ粒子(この場合は電子)全体の作る平均場と、その中で一粒子運動をするフェルミ粒子の波動関数を自己無撞着に決定することができる(SCF法)。 (ja)
rdfs:label
  • ハートリー=フォック方程式 (ja)
  • ハートリー=フォック方程式 (ja)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is prop-en:knownFor of
is owl:sameAs of
is foaf:primaryTopic of