QR分解(キューアールぶんかい、英: QR decomposition, QR factorization)とは、m × n 実行列 Aを、 m 次直交行列 Q と m × n 上三角行列 R との積への分解により表すこと、またはそう表した表現をいう。このような分解は常に存在する。 QR分解は線型最小二乗問題を解くために使用される。また、固有値問題の数値解法の1つであるQR法の基礎となっている。
QR分解(キューアールぶんかい、英: QR decomposition, QR factorization)とは、m × n 実行列 Aを、 m 次直交行列 Q と m × n 上三角行列 R との積への分解により表すこと、またはそう表した表現をいう。このような分解は常に存在する。 QR分解は線型最小二乗問題を解くために使用される。また、固有値問題の数値解法の1つであるQR法の基礎となっている。 (ja)
QR分解(キューアールぶんかい、英: QR decomposition, QR factorization)とは、m × n 実行列 Aを、 m 次直交行列 Q と m × n 上三角行列 R との積への分解により表すこと、またはそう表した表現をいう。このような分解は常に存在する。 QR分解は線型最小二乗問題を解くために使用される。また、固有値問題の数値解法の1つであるQR法の基礎となっている。 (ja)
QR分解(キューアールぶんかい、英: QR decomposition, QR factorization)とは、m × n 実行列 Aを、 m 次直交行列 Q と m × n 上三角行列 R との積への分解により表すこと、またはそう表した表現をいう。このような分解は常に存在する。 QR分解は線型最小二乗問題を解くために使用される。また、固有値問題の数値解法の1つであるQR法の基礎となっている。 (ja)
QR分解(キューアールぶんかい、英: QR decomposition, QR factorization)とは、m × n 実行列 Aを、 m 次直交行列 Q と m × n 上三角行列 R との積への分解により表すこと、またはそう表した表現をいう。このような分解は常に存在する。 QR分解は線型最小二乗問題を解くために使用される。また、固有値問題の数値解法の1つであるQR法の基礎となっている。 (ja)