正多面体(せいためんたい、英: regular polyhedron)、またはプラトン(の)立体(プラトン(の)りったい、英: Platonic solid)とは、すべての面が同一の正多角形で構成されてあり、かつすべての頂点において接する面の数が等しい凸多面体のこと。正多面体には正四面体、正六面体、正八面体、正十二面体、正二十面体の五種類がある。 正多面体の構成面を正 p 角形、頂点に集まる面の数を q として {p, q} のように表すことができる。これをシュレーフリ記号という。シュレーフリ記号は半正多面体(別名:アルキメデスの立体)にも拡張することができる。 三次元空間の中に一つの頂点を取り、その周りに取ることが可能な正多角形の数に関する制限から、正多面体が存在する必要条件が、{3,3}、{3,4}、{3,5}、{4,3}、{5,3} の五種類のみであることを示すことができる。同じことは、オイラーの多面体公式あるいはデカルトの不足角の定理からも示すことができる。 しかし、条件を緩めることによって、正多面体の拡張を考えることができる(参照:星型正多面体、ねじれ正多面体、正平面充填形)。

Property Value
dbo:abstract
  • 正多面体(せいためんたい、英: regular polyhedron)、またはプラトン(の)立体(プラトン(の)りったい、英: Platonic solid)とは、すべての面が同一の正多角形で構成されてあり、かつすべての頂点において接する面の数が等しい凸多面体のこと。正多面体には正四面体、正六面体、正八面体、正十二面体、正二十面体の五種類がある。 正多面体の構成面を正 p 角形、頂点に集まる面の数を q として {p, q} のように表すことができる。これをシュレーフリ記号という。シュレーフリ記号は半正多面体(別名:アルキメデスの立体)にも拡張することができる。 三次元空間の中に一つの頂点を取り、その周りに取ることが可能な正多角形の数に関する制限から、正多面体が存在する必要条件が、{3,3}、{3,4}、{3,5}、{4,3}、{5,3} の五種類のみであることを示すことができる。同じことは、オイラーの多面体公式あるいはデカルトの不足角の定理からも示すことができる。 しかし、条件を緩めることによって、正多面体の拡張を考えることができる(参照:星型正多面体、ねじれ正多面体、正平面充填形)。 (ja)
  • 正多面体(せいためんたい、英: regular polyhedron)、またはプラトン(の)立体(プラトン(の)りったい、英: Platonic solid)とは、すべての面が同一の正多角形で構成されてあり、かつすべての頂点において接する面の数が等しい凸多面体のこと。正多面体には正四面体、正六面体、正八面体、正十二面体、正二十面体の五種類がある。 正多面体の構成面を正 p 角形、頂点に集まる面の数を q として {p, q} のように表すことができる。これをシュレーフリ記号という。シュレーフリ記号は半正多面体(別名:アルキメデスの立体)にも拡張することができる。 三次元空間の中に一つの頂点を取り、その周りに取ることが可能な正多角形の数に関する制限から、正多面体が存在する必要条件が、{3,3}、{3,4}、{3,5}、{4,3}、{5,3} の五種類のみであることを示すことができる。同じことは、オイラーの多面体公式あるいはデカルトの不足角の定理からも示すことができる。 しかし、条件を緩めることによって、正多面体の拡張を考えることができる(参照:星型正多面体、ねじれ正多面体、正平面充填形)。 (ja)
dbo:thumbnail
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 16275 (xsd:integer)
dbo:wikiPageLength
  • 8497 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 87463493 (xsd:integer)
dbo:wikiPageWikiLink
prop-ja:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • 正多面体(せいためんたい、英: regular polyhedron)、またはプラトン(の)立体(プラトン(の)りったい、英: Platonic solid)とは、すべての面が同一の正多角形で構成されてあり、かつすべての頂点において接する面の数が等しい凸多面体のこと。正多面体には正四面体、正六面体、正八面体、正十二面体、正二十面体の五種類がある。 正多面体の構成面を正 p 角形、頂点に集まる面の数を q として {p, q} のように表すことができる。これをシュレーフリ記号という。シュレーフリ記号は半正多面体(別名:アルキメデスの立体)にも拡張することができる。 三次元空間の中に一つの頂点を取り、その周りに取ることが可能な正多角形の数に関する制限から、正多面体が存在する必要条件が、{3,3}、{3,4}、{3,5}、{4,3}、{5,3} の五種類のみであることを示すことができる。同じことは、オイラーの多面体公式あるいはデカルトの不足角の定理からも示すことができる。 しかし、条件を緩めることによって、正多面体の拡張を考えることができる(参照:星型正多面体、ねじれ正多面体、正平面充填形)。 (ja)
  • 正多面体(せいためんたい、英: regular polyhedron)、またはプラトン(の)立体(プラトン(の)りったい、英: Platonic solid)とは、すべての面が同一の正多角形で構成されてあり、かつすべての頂点において接する面の数が等しい凸多面体のこと。正多面体には正四面体、正六面体、正八面体、正十二面体、正二十面体の五種類がある。 正多面体の構成面を正 p 角形、頂点に集まる面の数を q として {p, q} のように表すことができる。これをシュレーフリ記号という。シュレーフリ記号は半正多面体(別名:アルキメデスの立体)にも拡張することができる。 三次元空間の中に一つの頂点を取り、その周りに取ることが可能な正多角形の数に関する制限から、正多面体が存在する必要条件が、{3,3}、{3,4}、{3,5}、{4,3}、{5,3} の五種類のみであることを示すことができる。同じことは、オイラーの多面体公式あるいはデカルトの不足角の定理からも示すことができる。 しかし、条件を緩めることによって、正多面体の拡張を考えることができる(参照:星型正多面体、ねじれ正多面体、正平面充填形)。 (ja)
rdfs:label
  • 正多面体 (ja)
  • 正多面体 (ja)
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is prop-ja:polyhedronType of
is owl:sameAs of
is foaf:primaryTopic of