代数幾何学では、代数多様体 V の函数体(function field)は、V 上の有理函数と解釈される対象から構成される。古典的な代数幾何学では、函数体は多項式の比であり、(complex algebraic geometry)では、函数体は有理型函数とその高次元類似である。現代の代数幾何学では、函数体は環の商体の元である。

Property Value
dbo:abstract
  • 代数幾何学では、代数多様体 V の函数体(function field)は、V 上の有理函数と解釈される対象から構成される。古典的な代数幾何学では、函数体は多項式の比であり、(complex algebraic geometry)では、函数体は有理型函数とその高次元類似である。現代の代数幾何学では、函数体は環の商体の元である。 (ja)
  • 代数幾何学では、代数多様体 V の函数体(function field)は、V 上の有理函数と解釈される対象から構成される。古典的な代数幾何学では、函数体は多項式の比であり、(complex algebraic geometry)では、函数体は有理型函数とその高次元類似である。現代の代数幾何学では、函数体は環の商体の元である。 (ja)
dbo:wikiPageID
  • 2999754 (xsd:integer)
dbo:wikiPageLength
  • 6659 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 59940084 (xsd:integer)
dbo:wikiPageWikiLink
prop-ja:authorlink
  • Robin Hartshorne (ja)
  • Robin Hartshorne (ja)
prop-ja:first
  • Robin (ja)
  • Robin (ja)
prop-ja:last
  • Hartshorne (ja)
  • Hartshorne (ja)
prop-ja:wikiPageUsesTemplate
prop-ja:year
  • 1977 (xsd:integer)
dct:subject
rdfs:comment
  • 代数幾何学では、代数多様体 V の函数体(function field)は、V 上の有理函数と解釈される対象から構成される。古典的な代数幾何学では、函数体は多項式の比であり、(complex algebraic geometry)では、函数体は有理型函数とその高次元類似である。現代の代数幾何学では、函数体は環の商体の元である。 (ja)
  • 代数幾何学では、代数多様体 V の函数体(function field)は、V 上の有理函数と解釈される対象から構成される。古典的な代数幾何学では、函数体は多項式の比であり、(complex algebraic geometry)では、函数体は有理型函数とその高次元類似である。現代の代数幾何学では、函数体は環の商体の元である。 (ja)
rdfs:label
  • 代数多様体の函数体 (ja)
  • 代数多様体の函数体 (ja)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is owl:sameAs of
is foaf:primaryTopic of