楕円曲線のハッセの定理(英語: Hasse's theorem on elliptic curves)は、ハッセの境界とも呼ばれ、有限体上の楕円曲線の持つ点の数の、上と下からの評価を与える。 位数 q の有限体上の楕円曲線 E の点の数が N であるとき、ヘルムート・ハッセ(Helmut Hasse)の結果は、その個数が であることを示している。つまり、この解釈は、N が q + 1 (これは同じ体の上の射影直線(projective line)の点の数である)と異なっていれば、この差「エラー項」は、絶対値が である2つの複素数の和である。 この結果は、エミール・アルティン(Emil Artin)により彼の論文で元々予想されたものである。これは1933年にハッセ(Hasse)により証明され、証明は一連の論文で出版された。 ハッセの定理は、E の局所ゼータ函数の根の絶対値の決定と同値である。この形で、楕円曲線に付随する函数体のリーマン予想との類似を理解することができる。

Property Value
dbo:abstract
  • 楕円曲線のハッセの定理(英語: Hasse's theorem on elliptic curves)は、ハッセの境界とも呼ばれ、有限体上の楕円曲線の持つ点の数の、上と下からの評価を与える。 位数 q の有限体上の楕円曲線 E の点の数が N であるとき、ヘルムート・ハッセ(Helmut Hasse)の結果は、その個数が であることを示している。つまり、この解釈は、N が q + 1 (これは同じ体の上の射影直線(projective line)の点の数である)と異なっていれば、この差「エラー項」は、絶対値が である2つの複素数の和である。 この結果は、エミール・アルティン(Emil Artin)により彼の論文で元々予想されたものである。これは1933年にハッセ(Hasse)により証明され、証明は一連の論文で出版された。 ハッセの定理は、E の局所ゼータ函数の根の絶対値の決定と同値である。この形で、楕円曲線に付随する函数体のリーマン予想との類似を理解することができる。 (ja)
  • 楕円曲線のハッセの定理(英語: Hasse's theorem on elliptic curves)は、ハッセの境界とも呼ばれ、有限体上の楕円曲線の持つ点の数の、上と下からの評価を与える。 位数 q の有限体上の楕円曲線 E の点の数が N であるとき、ヘルムート・ハッセ(Helmut Hasse)の結果は、その個数が であることを示している。つまり、この解釈は、N が q + 1 (これは同じ体の上の射影直線(projective line)の点の数である)と異なっていれば、この差「エラー項」は、絶対値が である2つの複素数の和である。 この結果は、エミール・アルティン(Emil Artin)により彼の論文で元々予想されたものである。これは1933年にハッセ(Hasse)により証明され、証明は一連の論文で出版された。 ハッセの定理は、E の局所ゼータ函数の根の絶対値の決定と同値である。この形で、楕円曲線に付随する函数体のリーマン予想との類似を理解することができる。 (ja)
dbo:wikiPageID
  • 2981747 (xsd:integer)
dbo:wikiPageLength
  • 7495 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 91226108 (xsd:integer)
dbo:wikiPageWikiLink
prop-ja:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • 楕円曲線のハッセの定理(英語: Hasse's theorem on elliptic curves)は、ハッセの境界とも呼ばれ、有限体上の楕円曲線の持つ点の数の、上と下からの評価を与える。 位数 q の有限体上の楕円曲線 E の点の数が N であるとき、ヘルムート・ハッセ(Helmut Hasse)の結果は、その個数が であることを示している。つまり、この解釈は、N が q + 1 (これは同じ体の上の射影直線(projective line)の点の数である)と異なっていれば、この差「エラー項」は、絶対値が である2つの複素数の和である。 この結果は、エミール・アルティン(Emil Artin)により彼の論文で元々予想されたものである。これは1933年にハッセ(Hasse)により証明され、証明は一連の論文で出版された。 ハッセの定理は、E の局所ゼータ函数の根の絶対値の決定と同値である。この形で、楕円曲線に付随する函数体のリーマン予想との類似を理解することができる。 (ja)
  • 楕円曲線のハッセの定理(英語: Hasse's theorem on elliptic curves)は、ハッセの境界とも呼ばれ、有限体上の楕円曲線の持つ点の数の、上と下からの評価を与える。 位数 q の有限体上の楕円曲線 E の点の数が N であるとき、ヘルムート・ハッセ(Helmut Hasse)の結果は、その個数が であることを示している。つまり、この解釈は、N が q + 1 (これは同じ体の上の射影直線(projective line)の点の数である)と異なっていれば、この差「エラー項」は、絶対値が である2つの複素数の和である。 この結果は、エミール・アルティン(Emil Artin)により彼の論文で元々予想されたものである。これは1933年にハッセ(Hasse)により証明され、証明は一連の論文で出版された。 ハッセの定理は、E の局所ゼータ函数の根の絶対値の決定と同値である。この形で、楕円曲線に付随する函数体のリーマン予想との類似を理解することができる。 (ja)
rdfs:label
  • 楕円曲線のハッセの定理 (ja)
  • 楕円曲線のハッセの定理 (ja)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is owl:sameAs of
is foaf:primaryTopic of