Property |
Value |
dbo:abstract
|
- 数学の分野における線型代数学の基本定理(せんけいだいすうがくのきほんていり、英: fundamental theorem of linear algebra)とは、ベクトル空間に関するいくつかの定理である。それらの定理においては、ある m×n 行列 A の階数 r や、その特異値分解 に関する内容が、具体的にまとめられている。はじめに、各行列 (行列 は 個の行と 個の列を持つ)は、「四つの基本部分空間」を導く。それらを次の表に示す: 続いて、次が成立する: 1.
* において、 である。すなわち零空間は、行空間の直交補空間である。 2.
* において、 である。すなわち左零空間は、列空間の直交補空間である。 各部分空間の次元は階数・退化次数の定理によって関連付けられており、上表の定理に従う。 また、これら全ての空間は、基底の選び方に依らず、本質的に定義される。そのような場合この定理は、抽象的ベクトル空間や作用素および双対空間として、 および を用いて次のように言い直すことが出来る: の核および像は、 の余核および余像に、それぞれ等しい。 (ja)
- 数学の分野における線型代数学の基本定理(せんけいだいすうがくのきほんていり、英: fundamental theorem of linear algebra)とは、ベクトル空間に関するいくつかの定理である。それらの定理においては、ある m×n 行列 A の階数 r や、その特異値分解 に関する内容が、具体的にまとめられている。はじめに、各行列 (行列 は 個の行と 個の列を持つ)は、「四つの基本部分空間」を導く。それらを次の表に示す: 続いて、次が成立する: 1.
* において、 である。すなわち零空間は、行空間の直交補空間である。 2.
* において、 である。すなわち左零空間は、列空間の直交補空間である。 各部分空間の次元は階数・退化次数の定理によって関連付けられており、上表の定理に従う。 また、これら全ての空間は、基底の選び方に依らず、本質的に定義される。そのような場合この定理は、抽象的ベクトル空間や作用素および双対空間として、 および を用いて次のように言い直すことが出来る: の核および像は、 の余核および余像に、それぞれ等しい。 (ja)
|
dbo:thumbnail
| |
dbo:wikiPageExternalLink
| |
dbo:wikiPageID
| |
dbo:wikiPageLength
|
- 2881 (xsd:nonNegativeInteger)
|
dbo:wikiPageRevisionID
| |
dbo:wikiPageWikiLink
| |
prop-en:wikiPageUsesTemplate
| |
dct:subject
| |
rdfs:comment
|
- 数学の分野における線型代数学の基本定理(せんけいだいすうがくのきほんていり、英: fundamental theorem of linear algebra)とは、ベクトル空間に関するいくつかの定理である。それらの定理においては、ある m×n 行列 A の階数 r や、その特異値分解 に関する内容が、具体的にまとめられている。はじめに、各行列 (行列 は 個の行と 個の列を持つ)は、「四つの基本部分空間」を導く。それらを次の表に示す: 続いて、次が成立する: 1.
* において、 である。すなわち零空間は、行空間の直交補空間である。 2.
* において、 である。すなわち左零空間は、列空間の直交補空間である。 各部分空間の次元は階数・退化次数の定理によって関連付けられており、上表の定理に従う。 また、これら全ての空間は、基底の選び方に依らず、本質的に定義される。そのような場合この定理は、抽象的ベクトル空間や作用素および双対空間として、 および を用いて次のように言い直すことが出来る: の核および像は、 の余核および余像に、それぞれ等しい。 (ja)
- 数学の分野における線型代数学の基本定理(せんけいだいすうがくのきほんていり、英: fundamental theorem of linear algebra)とは、ベクトル空間に関するいくつかの定理である。それらの定理においては、ある m×n 行列 A の階数 r や、その特異値分解 に関する内容が、具体的にまとめられている。はじめに、各行列 (行列 は 個の行と 個の列を持つ)は、「四つの基本部分空間」を導く。それらを次の表に示す: 続いて、次が成立する: 1.
* において、 である。すなわち零空間は、行空間の直交補空間である。 2.
* において、 である。すなわち左零空間は、列空間の直交補空間である。 各部分空間の次元は階数・退化次数の定理によって関連付けられており、上表の定理に従う。 また、これら全ての空間は、基底の選び方に依らず、本質的に定義される。そのような場合この定理は、抽象的ベクトル空間や作用素および双対空間として、 および を用いて次のように言い直すことが出来る: の核および像は、 の余核および余像に、それぞれ等しい。 (ja)
|
rdfs:label
|
- 線型代数学の基本定理 (ja)
- 線型代数学の基本定理 (ja)
|
owl:sameAs
| |
prov:wasDerivedFrom
| |
foaf:depiction
| |
foaf:isPrimaryTopicOf
| |
is dbo:wikiPageWikiLink
of | |
is owl:sameAs
of | |
is foaf:primaryTopic
of | |