数学において、ベクトル空間の線型写像 f : X → Y の余核 (よかく、cokernel) は f の終域 の f の像による商空間 Y/im(f) である。余核の次元は f の余次元 (corank) と呼ばれる。 余核は圏論の核の双対であるので、その名前がついている。核は定義域の部分対象であるのに対し(それは定義域に写す)、余核は終域の商対象である(それは終域から写す)。 直感的には、解きたい方程式 f(x) = y が与えられると、余核は方程式が解を持つために y が満たさなければならない制約 - 解の障害物 - を測り、一方核は解の自由さの度合を、存在すれば、測る。これは下でで詳述される。 より一般に、ある圏において射 f : X → Y (例えば群の間の準同型やヒルベルト空間の間の有界線型作用素)の余核は対象 Q と射 q : Y → Q であって合成 q f が圏のゼロ射であり、さらに、q はこの性質に関して普遍的であるようなものである。しばしば写像 q は省略され Q 自身が f の余核と呼ばれる。 アーベル群、ベクトル空間、加群といった抽象代数学の多くの状況において、準同型 f : X → Y の余核は Y の f の像による商である。ヒルベルト空間の間の有界線型作用素のような位相的な設定においては、典型的には商にいく前に像の閉包をとらなければならない。

Property Value
dbo:abstract
  • 数学において、ベクトル空間の線型写像 f : X → Y の余核 (よかく、cokernel) は f の終域 の f の像による商空間 Y/im(f) である。余核の次元は f の余次元 (corank) と呼ばれる。 余核は圏論の核の双対であるので、その名前がついている。核は定義域の部分対象であるのに対し(それは定義域に写す)、余核は終域の商対象である(それは終域から写す)。 直感的には、解きたい方程式 f(x) = y が与えられると、余核は方程式が解を持つために y が満たさなければならない制約 - 解の障害物 - を測り、一方核は解の自由さの度合を、存在すれば、測る。これは下でで詳述される。 より一般に、ある圏において射 f : X → Y (例えば群の間の準同型やヒルベルト空間の間の有界線型作用素)の余核は対象 Q と射 q : Y → Q であって合成 q f が圏のゼロ射であり、さらに、q はこの性質に関して普遍的であるようなものである。しばしば写像 q は省略され Q 自身が f の余核と呼ばれる。 アーベル群、ベクトル空間、加群といった抽象代数学の多くの状況において、準同型 f : X → Y の余核は Y の f の像による商である。ヒルベルト空間の間の有界線型作用素のような位相的な設定においては、典型的には商にいく前に像の閉包をとらなければならない。 (ja)
  • 数学において、ベクトル空間の線型写像 f : X → Y の余核 (よかく、cokernel) は f の終域 の f の像による商空間 Y/im(f) である。余核の次元は f の余次元 (corank) と呼ばれる。 余核は圏論の核の双対であるので、その名前がついている。核は定義域の部分対象であるのに対し(それは定義域に写す)、余核は終域の商対象である(それは終域から写す)。 直感的には、解きたい方程式 f(x) = y が与えられると、余核は方程式が解を持つために y が満たさなければならない制約 - 解の障害物 - を測り、一方核は解の自由さの度合を、存在すれば、測る。これは下でで詳述される。 より一般に、ある圏において射 f : X → Y (例えば群の間の準同型やヒルベルト空間の間の有界線型作用素)の余核は対象 Q と射 q : Y → Q であって合成 q f が圏のゼロ射であり、さらに、q はこの性質に関して普遍的であるようなものである。しばしば写像 q は省略され Q 自身が f の余核と呼ばれる。 アーベル群、ベクトル空間、加群といった抽象代数学の多くの状況において、準同型 f : X → Y の余核は Y の f の像による商である。ヒルベルト空間の間の有界線型作用素のような位相的な設定においては、典型的には商にいく前に像の閉包をとらなければならない。 (ja)
dbo:thumbnail
dbo:wikiPageID
  • 3091597 (xsd:integer)
dbo:wikiPageInterLanguageLink
dbo:wikiPageLength
  • 4077 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 91197302 (xsd:integer)
dbo:wikiPageWikiLink
prop-ja:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • 数学において、ベクトル空間の線型写像 f : X → Y の余核 (よかく、cokernel) は f の終域 の f の像による商空間 Y/im(f) である。余核の次元は f の余次元 (corank) と呼ばれる。 余核は圏論の核の双対であるので、その名前がついている。核は定義域の部分対象であるのに対し(それは定義域に写す)、余核は終域の商対象である(それは終域から写す)。 直感的には、解きたい方程式 f(x) = y が与えられると、余核は方程式が解を持つために y が満たさなければならない制約 - 解の障害物 - を測り、一方核は解の自由さの度合を、存在すれば、測る。これは下でで詳述される。 より一般に、ある圏において射 f : X → Y (例えば群の間の準同型やヒルベルト空間の間の有界線型作用素)の余核は対象 Q と射 q : Y → Q であって合成 q f が圏のゼロ射であり、さらに、q はこの性質に関して普遍的であるようなものである。しばしば写像 q は省略され Q 自身が f の余核と呼ばれる。 アーベル群、ベクトル空間、加群といった抽象代数学の多くの状況において、準同型 f : X → Y の余核は Y の f の像による商である。ヒルベルト空間の間の有界線型作用素のような位相的な設定においては、典型的には商にいく前に像の閉包をとらなければならない。 (ja)
  • 数学において、ベクトル空間の線型写像 f : X → Y の余核 (よかく、cokernel) は f の終域 の f の像による商空間 Y/im(f) である。余核の次元は f の余次元 (corank) と呼ばれる。 余核は圏論の核の双対であるので、その名前がついている。核は定義域の部分対象であるのに対し(それは定義域に写す)、余核は終域の商対象である(それは終域から写す)。 直感的には、解きたい方程式 f(x) = y が与えられると、余核は方程式が解を持つために y が満たさなければならない制約 - 解の障害物 - を測り、一方核は解の自由さの度合を、存在すれば、測る。これは下でで詳述される。 より一般に、ある圏において射 f : X → Y (例えば群の間の準同型やヒルベルト空間の間の有界線型作用素)の余核は対象 Q と射 q : Y → Q であって合成 q f が圏のゼロ射であり、さらに、q はこの性質に関して普遍的であるようなものである。しばしば写像 q は省略され Q 自身が f の余核と呼ばれる。 アーベル群、ベクトル空間、加群といった抽象代数学の多くの状況において、準同型 f : X → Y の余核は Y の f の像による商である。ヒルベルト空間の間の有界線型作用素のような位相的な設定においては、典型的には商にいく前に像の閉包をとらなければならない。 (ja)
rdfs:label
  • 余核 (ja)
  • 余核 (ja)
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is owl:sameAs of
is foaf:primaryTopic of