Property |
Value |
dbo:abstract
|
- 根と係数の関係(こんとけいすうのかんけい)は、多項式における係数全体と根全体の間に成り立つ関係を、係数体上の式で表したものである。 x に関する n 次式 an xn + an−1 xn−1 + … + a1 x + a0 の根を α1, …, αn とする。(このとき an ≠ 0 である) とおくとき、 が成り立つ。これを根と係数の関係という。 は α1, …, αn に関する k 次基本対称式である。 特に次の式が成り立つ。 論の定理である。 (ja)
- 根と係数の関係(こんとけいすうのかんけい)は、多項式における係数全体と根全体の間に成り立つ関係を、係数体上の式で表したものである。 x に関する n 次式 an xn + an−1 xn−1 + … + a1 x + a0 の根を α1, …, αn とする。(このとき an ≠ 0 である) とおくとき、 が成り立つ。これを根と係数の関係という。 は α1, …, αn に関する k 次基本対称式である。 特に次の式が成り立つ。 論の定理である。 (ja)
|
dbo:wikiPageID
| |
dbo:wikiPageLength
|
- 3299 (xsd:nonNegativeInteger)
|
dbo:wikiPageRevisionID
| |
dbo:wikiPageWikiLink
| |
prop-en:title
|
- 三次,四次,n次方程式の解と係数の関係とその証明 (ja)
- 三次,四次,n次方程式の解と係数の関係とその証明 (ja)
|
prop-en:urlname
|
- vietaformula (ja)
- vietaformula (ja)
|
prop-en:wikiPageUsesTemplate
| |
dct:subject
| |
rdfs:comment
|
- 根と係数の関係(こんとけいすうのかんけい)は、多項式における係数全体と根全体の間に成り立つ関係を、係数体上の式で表したものである。 x に関する n 次式 an xn + an−1 xn−1 + … + a1 x + a0 の根を α1, …, αn とする。(このとき an ≠ 0 である) とおくとき、 が成り立つ。これを根と係数の関係という。 は α1, …, αn に関する k 次基本対称式である。 特に次の式が成り立つ。 論の定理である。 (ja)
- 根と係数の関係(こんとけいすうのかんけい)は、多項式における係数全体と根全体の間に成り立つ関係を、係数体上の式で表したものである。 x に関する n 次式 an xn + an−1 xn−1 + … + a1 x + a0 の根を α1, …, αn とする。(このとき an ≠ 0 である) とおくとき、 が成り立つ。これを根と係数の関係という。 は α1, …, αn に関する k 次基本対称式である。 特に次の式が成り立つ。 論の定理である。 (ja)
|
rdfs:label
|
- 根と係数の関係 (ja)
- 根と係数の関係 (ja)
|
owl:sameAs
| |
prov:wasDerivedFrom
| |
foaf:isPrimaryTopicOf
| |
is dbo:wikiPageRedirects
of | |
is dbo:wikiPageWikiLink
of | |
is owl:sameAs
of | |
is foaf:primaryTopic
of | |