リアプノフ指数(リアプノフしすう、英: Lyapunov exponent)とは、力学系においてごく接近した軌道が離れていく度合いを表す量である。リャプノフ指数とも表記される。ロシア人科学者 Алекса́ндр Ляпуно́в(アレクサンドル・リプノーフ、Aleksandr Lyapunov)にその名をちなむ。 系の相空間上の2つの軌道について考える。2つの軌道上の時刻 t における点の距離をベクトル δ(t) として、初期状態 t = 0 には、これらの軌道は距離 δ(0) だけ離れているとする。δ(t) を近似的に次のように表す。 ここで はユークリッドノルムを意味する。上式で λ > 0 の場合は軌道は離れていき、 λ < 0 の場合は軌道は近づいていく。よって、軌道が離れていく度合いは λ の値により決定される。この λ がリアプノフ指数である。軌道がカオス的であるとき、上式のように軌道は指数関数的に離れていく。すなわち、リアプノフ指数が正であることが軌道がカオス的であることの1つの定義とされる。

Property Value
dbo:abstract
  • リアプノフ指数(リアプノフしすう、英: Lyapunov exponent)とは、力学系においてごく接近した軌道が離れていく度合いを表す量である。リャプノフ指数とも表記される。ロシア人科学者 Алекса́ндр Ляпуно́в(アレクサンドル・リプノーフ、Aleksandr Lyapunov)にその名をちなむ。 系の相空間上の2つの軌道について考える。2つの軌道上の時刻 t における点の距離をベクトル δ(t) として、初期状態 t = 0 には、これらの軌道は距離 δ(0) だけ離れているとする。δ(t) を近似的に次のように表す。 ここで はユークリッドノルムを意味する。上式で λ > 0 の場合は軌道は離れていき、 λ < 0 の場合は軌道は近づいていく。よって、軌道が離れていく度合いは λ の値により決定される。この λ がリアプノフ指数である。軌道がカオス的であるとき、上式のように軌道は指数関数的に離れていく。すなわち、リアプノフ指数が正であることが軌道がカオス的であることの1つの定義とされる。 より詳細には、系の状態変数が k 個(k > 1)の場合、すなわち相空間が k 次元である場合は各次元ごとに固有のリアプノフ指数を持つ。これらのリアプノフ指数の組をリアプノフスペクトラムと呼び、そのうちの最大のリアプノフ指数を最大リアプノフ指数と呼ぶ。各々のリアプノフ指数を見れば正であったり負であったりするが、最大リアプノフ指数が正であれば、その系はカオスの特徴の1つである初期値鋭敏性を持つといえる。 (ja)
  • リアプノフ指数(リアプノフしすう、英: Lyapunov exponent)とは、力学系においてごく接近した軌道が離れていく度合いを表す量である。リャプノフ指数とも表記される。ロシア人科学者 Алекса́ндр Ляпуно́в(アレクサンドル・リプノーフ、Aleksandr Lyapunov)にその名をちなむ。 系の相空間上の2つの軌道について考える。2つの軌道上の時刻 t における点の距離をベクトル δ(t) として、初期状態 t = 0 には、これらの軌道は距離 δ(0) だけ離れているとする。δ(t) を近似的に次のように表す。 ここで はユークリッドノルムを意味する。上式で λ > 0 の場合は軌道は離れていき、 λ < 0 の場合は軌道は近づいていく。よって、軌道が離れていく度合いは λ の値により決定される。この λ がリアプノフ指数である。軌道がカオス的であるとき、上式のように軌道は指数関数的に離れていく。すなわち、リアプノフ指数が正であることが軌道がカオス的であることの1つの定義とされる。 より詳細には、系の状態変数が k 個(k > 1)の場合、すなわち相空間が k 次元である場合は各次元ごとに固有のリアプノフ指数を持つ。これらのリアプノフ指数の組をリアプノフスペクトラムと呼び、そのうちの最大のリアプノフ指数を最大リアプノフ指数と呼ぶ。各々のリアプノフ指数を見れば正であったり負であったりするが、最大リアプノフ指数が正であれば、その系はカオスの特徴の1つである初期値鋭敏性を持つといえる。 (ja)
dbo:thumbnail
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 868091 (xsd:integer)
dbo:wikiPageLength
  • 15089 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 91229891 (xsd:integer)
dbo:wikiPageWikiLink
prop-en:title
  • Lyapunov Characteristic Exponent (ja)
  • Lyapunov Characteristic Exponent (ja)
prop-en:urlname
  • LyapunovCharacteristicExponent (ja)
  • LyapunovCharacteristicExponent (ja)
prop-en:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • リアプノフ指数(リアプノフしすう、英: Lyapunov exponent)とは、力学系においてごく接近した軌道が離れていく度合いを表す量である。リャプノフ指数とも表記される。ロシア人科学者 Алекса́ндр Ляпуно́в(アレクサンドル・リプノーフ、Aleksandr Lyapunov)にその名をちなむ。 系の相空間上の2つの軌道について考える。2つの軌道上の時刻 t における点の距離をベクトル δ(t) として、初期状態 t = 0 には、これらの軌道は距離 δ(0) だけ離れているとする。δ(t) を近似的に次のように表す。 ここで はユークリッドノルムを意味する。上式で λ > 0 の場合は軌道は離れていき、 λ < 0 の場合は軌道は近づいていく。よって、軌道が離れていく度合いは λ の値により決定される。この λ がリアプノフ指数である。軌道がカオス的であるとき、上式のように軌道は指数関数的に離れていく。すなわち、リアプノフ指数が正であることが軌道がカオス的であることの1つの定義とされる。 (ja)
  • リアプノフ指数(リアプノフしすう、英: Lyapunov exponent)とは、力学系においてごく接近した軌道が離れていく度合いを表す量である。リャプノフ指数とも表記される。ロシア人科学者 Алекса́ндр Ляпуно́в(アレクサンドル・リプノーフ、Aleksandr Lyapunov)にその名をちなむ。 系の相空間上の2つの軌道について考える。2つの軌道上の時刻 t における点の距離をベクトル δ(t) として、初期状態 t = 0 には、これらの軌道は距離 δ(0) だけ離れているとする。δ(t) を近似的に次のように表す。 ここで はユークリッドノルムを意味する。上式で λ > 0 の場合は軌道は離れていき、 λ < 0 の場合は軌道は近づいていく。よって、軌道が離れていく度合いは λ の値により決定される。この λ がリアプノフ指数である。軌道がカオス的であるとき、上式のように軌道は指数関数的に離れていく。すなわち、リアプノフ指数が正であることが軌道がカオス的であることの1つの定義とされる。 (ja)
rdfs:label
  • リアプノフ指数 (ja)
  • リアプノフ指数 (ja)
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is owl:sameAs of
is foaf:primaryTopic of