(3次元)ポアンカレ予想(ポアンカレよそう、Poincaré conjecture)とは、数学の位相幾何学(トポロジー)における定理の一つである。 3次元球面の特徴づけを与えるものであり、定理の主張は 単連結な3次元閉多様体は3次元球面 S3 に同相である というものである。現在まで7つのミレニアム懸賞問題のうち唯一解決されている問題である。 ポアンカレ予想は各次元で3種類(位相、PL,微分)が有り、かなり解けているが「4次元微分ポアンカレ予想」「4次元PLポアンカレ予想」「高次元微分ポアンカレ予想の残り少し」は未解決で有る。これらは非常に重要な問題で有る。

Property Value
dbo:abstract
  • (3次元)ポアンカレ予想(ポアンカレよそう、Poincaré conjecture)とは、数学の位相幾何学(トポロジー)における定理の一つである。 3次元球面の特徴づけを与えるものであり、定理の主張は 単連結な3次元閉多様体は3次元球面 S3 に同相である というものである。現在まで7つのミレニアム懸賞問題のうち唯一解決されている問題である。 ポアンカレ予想は各次元で3種類(位相、PL,微分)が有り、かなり解けているが「4次元微分ポアンカレ予想」「4次元PLポアンカレ予想」「高次元微分ポアンカレ予想の残り少し」は未解決で有る。これらは非常に重要な問題で有る。 (ja)
  • (3次元)ポアンカレ予想(ポアンカレよそう、Poincaré conjecture)とは、数学の位相幾何学(トポロジー)における定理の一つである。 3次元球面の特徴づけを与えるものであり、定理の主張は 単連結な3次元閉多様体は3次元球面 S3 に同相である というものである。現在まで7つのミレニアム懸賞問題のうち唯一解決されている問題である。 ポアンカレ予想は各次元で3種類(位相、PL,微分)が有り、かなり解けているが「4次元微分ポアンカレ予想」「4次元PLポアンカレ予想」「高次元微分ポアンカレ予想の残り少し」は未解決で有る。これらは非常に重要な問題で有る。 (ja)
dbo:thumbnail
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 7356 (xsd:integer)
dbo:wikiPageLength
  • 18821 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 92641012 (xsd:integer)
dbo:wikiPageWikiLink
prop-en:caption
  • 境界を持たないコンパクトな2次元曲面が、どのようなループであっても連続的に引き絞れば回収できるようであれば、その曲面は2次元球面に同相である。ポアンカレ予想は同様のことが3次元についても成り立つと主張する。 (ja)
  • 境界を持たないコンパクトな2次元曲面が、どのようなループであっても連続的に引き絞れば回収できるようであれば、その曲面は2次元球面に同相である。ポアンカレ予想は同様のことが3次元についても成り立つと主張する。 (ja)
prop-en:conjectureDate
  • 1904 (xsd:integer)
prop-en:conjecturedBy
prop-en:date
  • 2018 (xsd:integer)
prop-en:equivalentTo
  • (ja)
  • サーストンの幾何化予想 (ja)
  • (ja)
  • サーストンの幾何化予想 (ja)
prop-en:field
prop-en:firstProofBy
prop-en:firstProofDate
  • 2006 (xsd:integer)
prop-en:name
  • Poincaré conjecture (ja)
  • ポアンカレ予想 (ja)
  • Poincaré conjecture (ja)
  • ポアンカレ予想 (ja)
prop-en:section
  • 1 (xsd:integer)
prop-en:title
  • Poincaré Conjecture (ja)
  • Poincaré Conjecture (ja)
prop-en:urlname
  • PoincareConjecture (ja)
  • PoincareConjecture (ja)
prop-en:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • (3次元)ポアンカレ予想(ポアンカレよそう、Poincaré conjecture)とは、数学の位相幾何学(トポロジー)における定理の一つである。 3次元球面の特徴づけを与えるものであり、定理の主張は 単連結な3次元閉多様体は3次元球面 S3 に同相である というものである。現在まで7つのミレニアム懸賞問題のうち唯一解決されている問題である。 ポアンカレ予想は各次元で3種類(位相、PL,微分)が有り、かなり解けているが「4次元微分ポアンカレ予想」「4次元PLポアンカレ予想」「高次元微分ポアンカレ予想の残り少し」は未解決で有る。これらは非常に重要な問題で有る。 (ja)
  • (3次元)ポアンカレ予想(ポアンカレよそう、Poincaré conjecture)とは、数学の位相幾何学(トポロジー)における定理の一つである。 3次元球面の特徴づけを与えるものであり、定理の主張は 単連結な3次元閉多様体は3次元球面 S3 に同相である というものである。現在まで7つのミレニアム懸賞問題のうち唯一解決されている問題である。 ポアンカレ予想は各次元で3種類(位相、PL,微分)が有り、かなり解けているが「4次元微分ポアンカレ予想」「4次元PLポアンカレ予想」「高次元微分ポアンカレ予想の残り少し」は未解決で有る。これらは非常に重要な問題で有る。 (ja)
rdfs:label
  • ポアンカレ予想 (ja)
  • ポアンカレ予想 (ja)
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is prop-en:knownFor of
is owl:sameAs of
is foaf:primaryTopic of