パラメトロン(英: parametron)はフェライトコアのヒステリシス特性による、パラメータ励振現象の分周作用を利用した論理素子である。1954年に当時東京大学大学院理学部高橋秀俊研究室の大学院生であった後藤英一が発明した。真空管やトランジスタの使用量を大幅に削減してコンピュータを構成できるとして、当時としては多数のパラメトロン式コンピュータが日本で建造された。比較対象としてリレーよりは速く機械的な接点も無いなどの利点はあったものの、その後すぐに主流となった接合型トランジスタの性能向上が圧倒的で動作周波数でパラメトロンを上回ったこと、トランジスタにはラジオをはじめとする広範囲の応用があったのに対して、パラメトロンは論理素子専用という点でも不利であったことなどにより、1960年代にはほぼトランジスタによって置き換えられ利用されなくなった。 その後、後藤が発明したのと同じ原理のパラメトロンが様々な物理系で実現されるようになり、2010年代以降、パラメトロンを用いた量子コンピュータの開発と言う観点からも再び注目されるようになった。日本でも、2014年にNECや理研などの共同研究グループによって、パラメトロンを超伝導回路で実装した超伝導パラメトロン素子が開発され、これを用いた超伝導パラメトロン方式の量子アニーリングマシン(NEC方式の量子コンピュータ)の開発が進められている。

Property Value
dbo:abstract
  • パラメトロン(英: parametron)はフェライトコアのヒステリシス特性による、パラメータ励振現象の分周作用を利用した論理素子である。1954年に当時東京大学大学院理学部高橋秀俊研究室の大学院生であった後藤英一が発明した。真空管やトランジスタの使用量を大幅に削減してコンピュータを構成できるとして、当時としては多数のパラメトロン式コンピュータが日本で建造された。比較対象としてリレーよりは速く機械的な接点も無いなどの利点はあったものの、その後すぐに主流となった接合型トランジスタの性能向上が圧倒的で動作周波数でパラメトロンを上回ったこと、トランジスタにはラジオをはじめとする広範囲の応用があったのに対して、パラメトロンは論理素子専用という点でも不利であったことなどにより、1960年代にはほぼトランジスタによって置き換えられ利用されなくなった。 その後、後藤が発明したのと同じ原理のパラメトロンが様々な物理系で実現されるようになり、2010年代以降、パラメトロンを用いた量子コンピュータの開発と言う観点からも再び注目されるようになった。日本でも、2014年にNECや理研などの共同研究グループによって、パラメトロンを超伝導回路で実装した超伝導パラメトロン素子が開発され、これを用いた超伝導パラメトロン方式の量子アニーリングマシン(NEC方式の量子コンピュータ)の開発が進められている。 (ja)
  • パラメトロン(英: parametron)はフェライトコアのヒステリシス特性による、パラメータ励振現象の分周作用を利用した論理素子である。1954年に当時東京大学大学院理学部高橋秀俊研究室の大学院生であった後藤英一が発明した。真空管やトランジスタの使用量を大幅に削減してコンピュータを構成できるとして、当時としては多数のパラメトロン式コンピュータが日本で建造された。比較対象としてリレーよりは速く機械的な接点も無いなどの利点はあったものの、その後すぐに主流となった接合型トランジスタの性能向上が圧倒的で動作周波数でパラメトロンを上回ったこと、トランジスタにはラジオをはじめとする広範囲の応用があったのに対して、パラメトロンは論理素子専用という点でも不利であったことなどにより、1960年代にはほぼトランジスタによって置き換えられ利用されなくなった。 その後、後藤が発明したのと同じ原理のパラメトロンが様々な物理系で実現されるようになり、2010年代以降、パラメトロンを用いた量子コンピュータの開発と言う観点からも再び注目されるようになった。日本でも、2014年にNECや理研などの共同研究グループによって、パラメトロンを超伝導回路で実装した超伝導パラメトロン素子が開発され、これを用いた超伝導パラメトロン方式の量子アニーリングマシン(NEC方式の量子コンピュータ)の開発が進められている。 (ja)
dbo:thumbnail
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 192165 (xsd:integer)
dbo:wikiPageLength
  • 9704 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 92624746 (xsd:integer)
dbo:wikiPageWikiLink
prop-en:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • パラメトロン(英: parametron)はフェライトコアのヒステリシス特性による、パラメータ励振現象の分周作用を利用した論理素子である。1954年に当時東京大学大学院理学部高橋秀俊研究室の大学院生であった後藤英一が発明した。真空管やトランジスタの使用量を大幅に削減してコンピュータを構成できるとして、当時としては多数のパラメトロン式コンピュータが日本で建造された。比較対象としてリレーよりは速く機械的な接点も無いなどの利点はあったものの、その後すぐに主流となった接合型トランジスタの性能向上が圧倒的で動作周波数でパラメトロンを上回ったこと、トランジスタにはラジオをはじめとする広範囲の応用があったのに対して、パラメトロンは論理素子専用という点でも不利であったことなどにより、1960年代にはほぼトランジスタによって置き換えられ利用されなくなった。 その後、後藤が発明したのと同じ原理のパラメトロンが様々な物理系で実現されるようになり、2010年代以降、パラメトロンを用いた量子コンピュータの開発と言う観点からも再び注目されるようになった。日本でも、2014年にNECや理研などの共同研究グループによって、パラメトロンを超伝導回路で実装した超伝導パラメトロン素子が開発され、これを用いた超伝導パラメトロン方式の量子アニーリングマシン(NEC方式の量子コンピュータ)の開発が進められている。 (ja)
  • パラメトロン(英: parametron)はフェライトコアのヒステリシス特性による、パラメータ励振現象の分周作用を利用した論理素子である。1954年に当時東京大学大学院理学部高橋秀俊研究室の大学院生であった後藤英一が発明した。真空管やトランジスタの使用量を大幅に削減してコンピュータを構成できるとして、当時としては多数のパラメトロン式コンピュータが日本で建造された。比較対象としてリレーよりは速く機械的な接点も無いなどの利点はあったものの、その後すぐに主流となった接合型トランジスタの性能向上が圧倒的で動作周波数でパラメトロンを上回ったこと、トランジスタにはラジオをはじめとする広範囲の応用があったのに対して、パラメトロンは論理素子専用という点でも不利であったことなどにより、1960年代にはほぼトランジスタによって置き換えられ利用されなくなった。 その後、後藤が発明したのと同じ原理のパラメトロンが様々な物理系で実現されるようになり、2010年代以降、パラメトロンを用いた量子コンピュータの開発と言う観点からも再び注目されるようになった。日本でも、2014年にNECや理研などの共同研究グループによって、パラメトロンを超伝導回路で実装した超伝導パラメトロン素子が開発され、これを用いた超伝導パラメトロン方式の量子アニーリングマシン(NEC方式の量子コンピュータ)の開発が進められている。 (ja)
rdfs:label
  • パラメトロン (ja)
  • パラメトロン (ja)
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:wikiPageWikiLink of
is owl:sameAs of
is foaf:primaryTopic of