バナッハ=アラオグルの定理(バナッハ=アラオグルのていり、英: Banach–Alaoglu theorem)あるいはアラオグルの定理として知られる定理は、ノルム空間Vの共役空間V*の閉単位球が*弱位相関してコンパクトになるという定理である。 この定理の背景を簡単に述べると、関数解析学では無限次元のノルム空間Vを多用し、Vやその共役空間V*の元は何らかの集合上の実数値ないし複素数値の関数のなすベクトル空間である事が多い。しかしVが無限次元の場合、VやV*の閉単位球はノルム位相に関してはコンパクトにならない事が知られており、これが原因で有限次元とは異なり、VやV*上の有界な点列が(ノルム位相に関して)収束部分列を持つことが保証されない。これは例えば微分方程式をノルムに関して近似する解fεを求めた上でε→0とした場合、その極限(すなわち微分方程式の解そのもの)が存在する事が保証されない事を意味する。微分方程式の振る舞いの記述を主たる適用先とする関数解析学において、これは致命的である。 しかしバナッハ=アラオグルの定理は閉単位球が*弱位相に関してコンパクトである事を保証しているので、弱位相の意味での近似解fεを求めれば、が収束部分列を持つ事が保証され、その収束部分列の極限が微分方程式の解になっている事を証明する道が開かれる。

Property Value
dbo:abstract
  • バナッハ=アラオグルの定理(バナッハ=アラオグルのていり、英: Banach–Alaoglu theorem)あるいはアラオグルの定理として知られる定理は、ノルム空間Vの共役空間V*の閉単位球が*弱位相関してコンパクトになるという定理である。 この定理の背景を簡単に述べると、関数解析学では無限次元のノルム空間Vを多用し、Vやその共役空間V*の元は何らかの集合上の実数値ないし複素数値の関数のなすベクトル空間である事が多い。しかしVが無限次元の場合、VやV*の閉単位球はノルム位相に関してはコンパクトにならない事が知られており、これが原因で有限次元とは異なり、VやV*上の有界な点列が(ノルム位相に関して)収束部分列を持つことが保証されない。これは例えば微分方程式をノルムに関して近似する解fεを求めた上でε→0とした場合、その極限(すなわち微分方程式の解そのもの)が存在する事が保証されない事を意味する。微分方程式の振る舞いの記述を主たる適用先とする関数解析学において、これは致命的である。 しかしバナッハ=アラオグルの定理は閉単位球が*弱位相に関してコンパクトである事を保証しているので、弱位相の意味での近似解fεを求めれば、が収束部分列を持つ事が保証され、その収束部分列の極限が微分方程式の解になっている事を証明する道が開かれる。 この定理は、オブザーバブルの代数の状態の集合を表現するときに物理学的に応用される。すなわち、任意の状態はいわゆる純粋状態の凸線型結合として表現される。 この定理は可分な場合に対して1932年にステファン・バナフによって示され、一般の場合は1940年ににより示された。 (ja)
  • バナッハ=アラオグルの定理(バナッハ=アラオグルのていり、英: Banach–Alaoglu theorem)あるいはアラオグルの定理として知られる定理は、ノルム空間Vの共役空間V*の閉単位球が*弱位相関してコンパクトになるという定理である。 この定理の背景を簡単に述べると、関数解析学では無限次元のノルム空間Vを多用し、Vやその共役空間V*の元は何らかの集合上の実数値ないし複素数値の関数のなすベクトル空間である事が多い。しかしVが無限次元の場合、VやV*の閉単位球はノルム位相に関してはコンパクトにならない事が知られており、これが原因で有限次元とは異なり、VやV*上の有界な点列が(ノルム位相に関して)収束部分列を持つことが保証されない。これは例えば微分方程式をノルムに関して近似する解fεを求めた上でε→0とした場合、その極限(すなわち微分方程式の解そのもの)が存在する事が保証されない事を意味する。微分方程式の振る舞いの記述を主たる適用先とする関数解析学において、これは致命的である。 しかしバナッハ=アラオグルの定理は閉単位球が*弱位相に関してコンパクトである事を保証しているので、弱位相の意味での近似解fεを求めれば、が収束部分列を持つ事が保証され、その収束部分列の極限が微分方程式の解になっている事を証明する道が開かれる。 この定理は、オブザーバブルの代数の状態の集合を表現するときに物理学的に応用される。すなわち、任意の状態はいわゆる純粋状態の凸線型結合として表現される。 この定理は可分な場合に対して1932年にステファン・バナフによって示され、一般の場合は1940年ににより示された。 (ja)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 3210125 (xsd:integer)
dbo:wikiPageLength
  • 15832 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 91226637 (xsd:integer)
dbo:wikiPageWikiLink
prop-en:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • バナッハ=アラオグルの定理(バナッハ=アラオグルのていり、英: Banach–Alaoglu theorem)あるいはアラオグルの定理として知られる定理は、ノルム空間Vの共役空間V*の閉単位球が*弱位相関してコンパクトになるという定理である。 この定理の背景を簡単に述べると、関数解析学では無限次元のノルム空間Vを多用し、Vやその共役空間V*の元は何らかの集合上の実数値ないし複素数値の関数のなすベクトル空間である事が多い。しかしVが無限次元の場合、VやV*の閉単位球はノルム位相に関してはコンパクトにならない事が知られており、これが原因で有限次元とは異なり、VやV*上の有界な点列が(ノルム位相に関して)収束部分列を持つことが保証されない。これは例えば微分方程式をノルムに関して近似する解fεを求めた上でε→0とした場合、その極限(すなわち微分方程式の解そのもの)が存在する事が保証されない事を意味する。微分方程式の振る舞いの記述を主たる適用先とする関数解析学において、これは致命的である。 しかしバナッハ=アラオグルの定理は閉単位球が*弱位相に関してコンパクトである事を保証しているので、弱位相の意味での近似解fεを求めれば、が収束部分列を持つ事が保証され、その収束部分列の極限が微分方程式の解になっている事を証明する道が開かれる。 (ja)
  • バナッハ=アラオグルの定理(バナッハ=アラオグルのていり、英: Banach–Alaoglu theorem)あるいはアラオグルの定理として知られる定理は、ノルム空間Vの共役空間V*の閉単位球が*弱位相関してコンパクトになるという定理である。 この定理の背景を簡単に述べると、関数解析学では無限次元のノルム空間Vを多用し、Vやその共役空間V*の元は何らかの集合上の実数値ないし複素数値の関数のなすベクトル空間である事が多い。しかしVが無限次元の場合、VやV*の閉単位球はノルム位相に関してはコンパクトにならない事が知られており、これが原因で有限次元とは異なり、VやV*上の有界な点列が(ノルム位相に関して)収束部分列を持つことが保証されない。これは例えば微分方程式をノルムに関して近似する解fεを求めた上でε→0とした場合、その極限(すなわち微分方程式の解そのもの)が存在する事が保証されない事を意味する。微分方程式の振る舞いの記述を主たる適用先とする関数解析学において、これは致命的である。 しかしバナッハ=アラオグルの定理は閉単位球が*弱位相に関してコンパクトである事を保証しているので、弱位相の意味での近似解fεを求めれば、が収束部分列を持つ事が保証され、その収束部分列の極限が微分方程式の解になっている事を証明する道が開かれる。 (ja)
rdfs:label
  • バナッハ=アラオグルの定理 (ja)
  • バナッハ=アラオグルの定理 (ja)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is owl:sameAs of
is foaf:primaryTopic of