アインシュタイン・ヒルベルト作用(英語: Einstein–Hilbert action)、あるいはヒルベルト作用は、一般相対性理論において、最小作用の原理を通してアインシュタイン方程式を導く作用である。この作用は、1915年にダフィット・ヒルベルトにより最初に提案された。 (- + + +) 計量符号を用いると、作用の重力場の部分は で与えられる。ここに は計量テンソルの行列式、R はリッチスカラー曲率である。比例係数 κ はアインシュタインの重力定数と呼ばれ、ニュートンの重力定数 G、真空の光速 c と κ=8πG/c4 で関係づけられる。積分は収束するならば、時空全体を渡ってとる。収束しないならば作用はもはやうまく定義することができないが、非常に大きな相対的にコンパクトな領域を渡る定義に置き換えると、アインシュタイン・ヒルベルト作用のオイラー=ラグランジュ方程式として、アインシュタイン方程式を表すことができる。

Property Value
dbo:abstract
  • アインシュタイン・ヒルベルト作用(英語: Einstein–Hilbert action)、あるいはヒルベルト作用は、一般相対性理論において、最小作用の原理を通してアインシュタイン方程式を導く作用である。この作用は、1915年にダフィット・ヒルベルトにより最初に提案された。 (- + + +) 計量符号を用いると、作用の重力場の部分は で与えられる。ここに は計量テンソルの行列式、R はリッチスカラー曲率である。比例係数 κ はアインシュタインの重力定数と呼ばれ、ニュートンの重力定数 G、真空の光速 c と κ=8πG/c4 で関係づけられる。積分は収束するならば、時空全体を渡ってとる。収束しないならば作用はもはやうまく定義することができないが、非常に大きな相対的にコンパクトな領域を渡る定義に置き換えると、アインシュタイン・ヒルベルト作用のオイラー=ラグランジュ方程式として、アインシュタイン方程式を表すことができる。 (ja)
  • アインシュタイン・ヒルベルト作用(英語: Einstein–Hilbert action)、あるいはヒルベルト作用は、一般相対性理論において、最小作用の原理を通してアインシュタイン方程式を導く作用である。この作用は、1915年にダフィット・ヒルベルトにより最初に提案された。 (- + + +) 計量符号を用いると、作用の重力場の部分は で与えられる。ここに は計量テンソルの行列式、R はリッチスカラー曲率である。比例係数 κ はアインシュタインの重力定数と呼ばれ、ニュートンの重力定数 G、真空の光速 c と κ=8πG/c4 で関係づけられる。積分は収束するならば、時空全体を渡ってとる。収束しないならば作用はもはやうまく定義することができないが、非常に大きな相対的にコンパクトな領域を渡る定義に置き換えると、アインシュタイン・ヒルベルト作用のオイラー=ラグランジュ方程式として、アインシュタイン方程式を表すことができる。 (ja)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 2907132 (xsd:integer)
dbo:wikiPageLength
  • 9023 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 92039492 (xsd:integer)
dbo:wikiPageWikiLink
prop-en:first
  • D.D. (ja)
  • D.D. (ja)
prop-en:last
  • Sokolov (ja)
  • Sokolov (ja)
prop-en:title
  • Cosmological constant (ja)
  • Cosmological constant (ja)
prop-en:urlname
  • Cosmological_constant (ja)
  • Cosmological_constant (ja)
prop-en:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • アインシュタイン・ヒルベルト作用(英語: Einstein–Hilbert action)、あるいはヒルベルト作用は、一般相対性理論において、最小作用の原理を通してアインシュタイン方程式を導く作用である。この作用は、1915年にダフィット・ヒルベルトにより最初に提案された。 (- + + +) 計量符号を用いると、作用の重力場の部分は で与えられる。ここに は計量テンソルの行列式、R はリッチスカラー曲率である。比例係数 κ はアインシュタインの重力定数と呼ばれ、ニュートンの重力定数 G、真空の光速 c と κ=8πG/c4 で関係づけられる。積分は収束するならば、時空全体を渡ってとる。収束しないならば作用はもはやうまく定義することができないが、非常に大きな相対的にコンパクトな領域を渡る定義に置き換えると、アインシュタイン・ヒルベルト作用のオイラー=ラグランジュ方程式として、アインシュタイン方程式を表すことができる。 (ja)
  • アインシュタイン・ヒルベルト作用(英語: Einstein–Hilbert action)、あるいはヒルベルト作用は、一般相対性理論において、最小作用の原理を通してアインシュタイン方程式を導く作用である。この作用は、1915年にダフィット・ヒルベルトにより最初に提案された。 (- + + +) 計量符号を用いると、作用の重力場の部分は で与えられる。ここに は計量テンソルの行列式、R はリッチスカラー曲率である。比例係数 κ はアインシュタインの重力定数と呼ばれ、ニュートンの重力定数 G、真空の光速 c と κ=8πG/c4 で関係づけられる。積分は収束するならば、時空全体を渡ってとる。収束しないならば作用はもはやうまく定義することができないが、非常に大きな相対的にコンパクトな領域を渡る定義に置き換えると、アインシュタイン・ヒルベルト作用のオイラー=ラグランジュ方程式として、アインシュタイン方程式を表すことができる。 (ja)
rdfs:label
  • アインシュタイン・ヒルベルト作用 (ja)
  • アインシュタイン・ヒルベルト作用 (ja)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is owl:sameAs of
is foaf:primaryTopic of